Skip to main content
Log in

Effect of ciprofloxacin on the pharmacokinetics of ropivacaine

  • Pharmacokinetics and Disposition
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

Objective

To assess the effect of ciprofloxacin on the pharmacokinetics of ropivacaine.

Methods

In a double-blind, randomised, cross-over study, nine healthy volunteers were treated for 2.5 days with 500 mg oral ciprofloxacin or placebo twice daily. On day 3, they received a single dose of 0.6 mg/kg ropivacaine intravenously over 30 min. Ropivacaine, 3-hydroxyropivacaine (3-OH-ropivacaine), and (S)-2′,6′-pipecoloxylidide (PPX) in venous plasma and urine were measured for up to 12 h and 24 h, respectively.

Results

Ciprofloxacin decreased the mean clearance (CL) of ropivacaine by 31% (P<0.05), with a considerable inter-individual variation (range from −52% to +39%). It also decreased the area under the plasma concentration–time curve (AUC) of 3-OH-ropivacaine by 38% (P<0.05) and urinary excretion of 3-OH-ropivacaine by 27% (P<0.05). Ciprofloxacin increased the AUC of PPX by 71% (P<0.01) and urinary excretion of PPX by 97% (P<0.01).

Conclusion

Ciprofloxacin modestly decreased the mean ropivacaine CL by inhibiting the CYP1A2-mediated formation of 3-OH-ropivacaine. At the same time, the CYP3A4-mediated formation of PPX was increased. There was a marked inter-individual variation in the extent of the interaction, and, for some individuals, the concomitant use of ciprofloxacin with ropivacaine might produce toxic symptoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

References

  1. McClure JH (1996) Ropivacaine. Br J Anaesth 76:300–307

    CAS  PubMed  Google Scholar 

  2. Lee A, Fagan D, Lamont M, Tucker GT (1989) Disposition kinetics of ropivacaine in humans. Anesth Analg 69:736–738

    CAS  PubMed  Google Scholar 

  3. Halldin MM, Bredberg E, Angelin B, Arvidsson T, Askemark Y, Elofsson S, Widman M (1996) Metabolism and excretion of ropivacaine in humans. Drug Metab Dispos 24:962–968

    CAS  PubMed  Google Scholar 

  4. Oda Y, Furuichi K, Tanaka K, Hiroi T, Imaoka S, Asada A, Fujimori M, Funae Y (1995) Metabolism of the a local anesthetic, ropivacaine, by human hepatic cytochrome P450. Anesthesiology 82:214–220

    CAS  PubMed  Google Scholar 

  5. Ekström G, Gunnarsson U-B (1996) Ropivacaine, a new amide-type local anesthetic agent, is metabolized by cytochromes P450 1A and 3A in human liver microsomes. Drug Metab Dispos 24:955–961

    PubMed  Google Scholar 

  6. Arlander E, Ekström G, Alm C, Carrillo JA, Bielenstein M, Böttiger Y, Bertilsson L, Gustafsson LL (1998) Metabolism of ropivacaine in humans is mediated by CYP1A2 and to a minor extent by CYP3A4: an interaction study with fluvoxamine and ketoconazole as in vivo inhibitors. Clin Pharmacol Ther 64:484–491

    CAS  PubMed  Google Scholar 

  7. Jokinen M J, Ahonen J, Neuvonen P J, Olkkola K T (2000) The effect of erythromycin, fluvoxamine, and their combination on the pharmacokinetics of ropivacaine. Anesth Analg 91:1207–1212

    CAS  PubMed  Google Scholar 

  8. Jokinen MJ, Ahonen J, Neuvonen PJ, Olkkola KT (2001) Effect of clarithromycin and itraconazole on the pharmacokinetics of ropivacaine. Pharmacol Toxicol 88:187–191

    CAS  PubMed  Google Scholar 

  9. Jokinen MJ, Olkkola KT, Ahonen J, Neuvonen PJ (2001) Effect of rifampin and tobacco smoking on the pharmacokinetics of ropivacaine. Clin Pharmacol Ther 70:344–350

    Google Scholar 

  10. Davis R, Markham A, Balfour JA (1996) Ciprofloxacin. An updated review of its pharmacology, therapeutic efficacy and tolerability. Drugs 51:1019–1074

    CAS  PubMed  Google Scholar 

  11. Bertz RJ, Granneman GR (1997) Use of in vitro and in vivo data to estimate the likelihood of metabolic pharmacokinetic interactions. Clin Pharmacokinet 32:210–258

    Google Scholar 

  12. Wijnands WJA, Vree TB, van Herwaarden CLA (1986) The influence of quinolone derivatives on theophylline clearance. Br J Clin Pharmacol 22:677–683

    CAS  PubMed  Google Scholar 

  13. Batty KT, Davis TM, Ilett KF, Dusci LJ, Langton SR (1995) The effect of ciprofloxacin on theophylline pharmacokinetics in healthy subjects. Br J Clin Pharmacol 39:305–311

    CAS  PubMed  Google Scholar 

  14. Harder S, Staib AH, Beer C, Papenburg A, Stille W, Shah PM (1988) 4-Quinolones inhibit biotransformation of caffeine. Eur J Clin Pharmacol 35:651–656

    CAS  PubMed  Google Scholar 

  15. Raaska K, Neuvonen PJ (2000) Ciprofloxacin increases serum clozapine and N-desmethylclozapine: a study in patients with schizophrenia. Eur J Clin Pharmacol 56:585–589

    Google Scholar 

  16. Arvidsson T, Bruce HF, Halldin MM (1995) Lack of metabolic racemisation of ropivacaine, determined by liquid chromatography using a chiral AGP column. Chirality 7:272–277

    CAS  PubMed  Google Scholar 

  17. Kamberi M, Tsutsumi K, Kotegawa T, Nakamura K, Nakano S (1998) Determination of ciprofloxacin in plasma and urine by HPLC with ultraviolet detection. Clin Chem 44:1251–1255

    CAS  PubMed  Google Scholar 

  18. Lee A, Fagan D, Lamont M, Tucker GT (1989) Disposition kinetics of ropivacaine in humans. Anesth Analg 69:736–738

    CAS  PubMed  Google Scholar 

  19. Rowland M, Tozer T (1995) Clinical pharmacokinetics, concepts and applications. 3rd edn. Williams and Wilkins, Baltimore, p 138

  20. Falany CN, Falany JL, Wang J, Hedstrom J, von Euler Chelpin H, Swedmark S (1999) Studies on sulfation of synthesized metabolites from the local anesthetics ropivacaine and lidocaine using human cloned sulfotransferases. Drug Metab Dispos 27:1057–1063

    CAS  PubMed  Google Scholar 

  21. Jeppesen U, Gram L F, Vistisen K, Loft S, Poulsen HE, Brøsen K (1996) Dose-dependent inhibition of CYP1A2, CYP2C19 and CYP2D6 by citalopram, fluoxetine, fluvoxamine and paroxetine. Eur J Clin Pharmacol 51:73–78

    Google Scholar 

  22. Emanuelsson B-MK, Zaric D, Nydahl P-A, Axelsson KH (1995) Pharmacokinetics of ropivacaine and bupivacaine during 21 hours of continuous epidural infusion in healthy male volunteers. Anesth Analg 81:1163–1168

    CAS  PubMed  Google Scholar 

  23. Erichsen C-J, Sjövall J, Kehlet H, Hedlund C, Arvidsson T (1996) Pharmacokinetics and analgesic effect of ropivacaine during continuous epidural infusion for postoperative pain relief. Anesthesiology 84:834–842

    CAS  PubMed  Google Scholar 

  24. Scott DB, Lee A, Fagan D, Bowler GMR, Bloomfield P, Lundh R (1989) Acute toxicity of ropivacaine compared with that of bupivacaine. Anesth Analg 69:563–569

    CAS  PubMed  Google Scholar 

  25. Knudsen K, Beckman Suurküla M, Blomberg S, Sjövall J, Edvardsson N (1997) Central nervous and cardiovascular effects of i.v. infusions of ropivacaine, bupivacaine and placebo in volunteers. Br J Anaesth 78:507–514

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Jouko Laitila, Kerttu Mårtensson, Mikko Neuvonen and Lisbet Partanen for the skilful determination of plasma and urine drug concentrations; and Pirkko Herranen, Anne Karhu, Minna Korvenpää and Anja Liukko for excellent technical assistance. This study was supported by grants from the Helsinki University Central Hospital Research Fund and the National Technology Agency of Finland (TEKES), and it complies with the current laws of Finland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mika J. Jokinen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jokinen, M.J., Olkkola, K.T., Ahonen, J. et al. Effect of ciprofloxacin on the pharmacokinetics of ropivacaine. Eur J Clin Pharmacol 58, 653–657 (2003). https://doi.org/10.1007/s00228-002-0540-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-002-0540-8

Keywords

Navigation