Skip to main content
Log in

Molecular phylogeny of obligate fish parasites of the family Cymothoidae (Isopoda, Crustacea): evolution of the attachment mode to host fish and the habitat shift from saline water to freshwater

  • Original paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

In host–parasite coevolution, parasite innovations including the acquisition of new habitats and novel traits can trigger evolutionary breakthroughs and enhance parasite diversification via accumulation of new hosts. All species of the family Cymothoidae are obligate fish parasites, attaching to exterior body surfaces of fish, the buccal or opercular cavities, or burrowing into abdominal muscle tissue. In the present study, we constructed a molecular phylogeny of 27 cymothoid species that parasitise 38 fish species, combined with 2 prior cymothoid datasets, based on the sequences of mitochondrial 16S rRNA and COI genes. We explored the evolution of the host attachment mode, and the habitat shift from saline water to freshwater. Our evolutionary trees include two freshwater clades, an abdominal burrower clade, and cymothoid clades that are closer to the base of Cymothoidae than those initially analysed. We found that the basal clade of Cymothoidae was Elthusa sacciger, which is parasitic in the opercular cavity of synaphobranchid eels. This result suggests that cymothoids may have originated in deep seas, subsequently expanded to shallow seas, and then to brackish and/or freshwater, by shifting host species. Invasion of freshwater habitats has occurred at least twice; freshwater abdominal muscle burrowers living on armoured catfish constitute a clade allied to E. sacciger. The ancestral host attachment site, based on our dataset, was the opercular cavity, followed (sequentially) by buccal colonisation and attachment to the external body.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adlard RD, Lester RJG (1995) The life-cycle and biology of Anilocra pomacentri (Isopoda, Cymothoidae), an ectoparasitic isopod of the coral-reef fish, Chromis nitida (Perciformes, Pomacentridae). Aust J Zool 43:271–281. doi:10.1071/ZO9950271

    Article  Google Scholar 

  • Boyko CB, Moss J, Williams JD, Shields JD (2013) A molecular phylogeny of Bopyroidea and Cryptoniscoidea (Crustacea: Isopoda). Syst Biodivers 11:495–506. doi:10.1080/14772000.2013.865679

    Article  Google Scholar 

  • Bruce NL (1983) Aegidae (Isopoda: Crustacea) from Australia with descriptions of three new species. J Nat Hist 17:757–788. doi:10.1080/00222938300770591

    Article  Google Scholar 

  • Bruce NL (1986) Revision of the isopod crustacean genus Mothocya Costa, in Hope, 1851 (Cymothoidae: Flabellifera), parasitic on marine fishes. J Nat Hist 20:1089–1189

    Article  Google Scholar 

  • Bruce NL (1987) Australian Pleopodias Richardson, 1910, and Anilocra Leach, 1818 (Isopoda: Cymothoidae), crustacean parasites of marine fishes. Rec Aust Mus 39:85–130

    Article  Google Scholar 

  • Bruce NL (1990) The genera Catoessa, Elthusa, Enispa, Ichthyoxenus, Idusa, Livoneca and Norileca n.gen. (Isopoda, Cymothoidae), crustacean parasites of marine fishes, with descriptions of eastern Australian species. Rec Aust Mus 42:247–300. doi:10.3853/j.0067-1975.42.1990.118

    Article  Google Scholar 

  • Bruce NL (2009) The marine fauna of New Zealand: Isopoda, Aegidae (Crustacea). NIWA Biodivers Mem 122:1–252

    Google Scholar 

  • Bruce NL, Schotte M (2008) Cymothoidae. In: Boyko CB, Bruce NL, Merrin KL, Ota Y, Poore GCB, Taiti S, Schotte M, Wilson GDF (eds) World Marine, Freshwater and Terrestrial Isopod Crustaceans database. http://www.marinespecies.org/aphia.php?p=taxdetails&id=118274. Accessed 13 Dec 2016. (2008 onwards)

  • Brusca RC (1981) A monograph on the Isopoda Cymothoidae (Crustacea) of the eastern Pacific. Zool J Linn Soc 73:117–199

    Article  Google Scholar 

  • Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T (2009) trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25:1972–1973. doi:10.1093/bioinformatics/btp348

    Article  Google Scholar 

  • Chilton C (1926) Zoological results of a tour in the far East. The Tanaidacea and Isopoda of Tale Sap. Rec Indian Mus 28:173–185

    Google Scholar 

  • Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol 3:294–299

    CAS  Google Scholar 

  • Fryer G (1968) A new parasitic isopod of the family Cymothoidae from clupeid fishes of Lake Tanganyika: a further Lake Tanganyika enigma. J Zool 156:35–43

    Article  Google Scholar 

  • Goto R, Kawakita A, Ishikawa H, Hamamura Y, Kato M (2012) Molecular phylogeny of the bivalve superfamily Galeommatoidea (Heterodonta, Veneroida) reveals dynamic evolution of symbiotic lifestyle and interphylum host switching. BMC Evol Biol 12:1–13. doi:10.1186/1471-2148-12-172

    Article  Google Scholar 

  • Hadfield KA (2012) The biodiversity and systematics of marine fish parasitic isopods of the family Cymothoidae from Southern Africa. Dissertation, University of Johanesburg

  • Hadfield KA, Bruce NL, Smit NJ (2015) Review of Mothocya Costa in Hope 1851 Crustacea Isopoda Cymothoidae from southern Africa, with the description of a new species. Afr Zool 50:147–163. doi:10.1080/15627020.2015.1043943

    Article  Google Scholar 

  • Hassanin A (2006) Phylogeny of Arthropoda inferred from mitochondrial sequences: strategies for limiting the misleading effects of multiple changes in pattern and rates of substitution. Mol Phylogenet Evol 38:100–116. doi:10.1016/j.ympev.2005.09.012

    Article  CAS  Google Scholar 

  • Horton T, Okamura B (2003) Post-haemorrhagic anaemia in sea bass, Dicentrarchus labrax (L.), caused by blood feeding of Ceratothoa oestroides (Isopoda: Cymothoidae). J Fish Dis 26:401–406. doi:10.1046/j.1365-2761.2003.00476.x

    Article  CAS  Google Scholar 

  • Inoue JG, Miya M, Miller MJ, Sado T, Hanel R, Hatooka K, Aoyama J, Minegishi Y, Nishida M, Tsukamoto K (2010) Deep-ocean origin of the freshwater eels. Biol Lett 6:363–366. doi:10.1098/rsbl.2009.0989

    Article  Google Scholar 

  • Inoue J, Sato Y, Sinclair R, Tsukamoto K, Nishida M (2015) Rapid genome reshaping by multiple-gene loss after whole-genome duplication in teleost fish suggested by mathematical modeling. Proc Natl Acad Sci USA 112:14918–14923. doi:10.1073/pnas.1507669112

    Article  CAS  Google Scholar 

  • Johnson GD, Ida H, Sakaue J, Sado T, Asahida T, Miya M (2012) A ‘living fossil’ eel (Anguilliformes: Protoanguillidae, fam. nov.) from an undersea cave in Palau. Proc R Soc B 279:934–943. doi:10.1098/rspb.2011.1289

    Article  Google Scholar 

  • Jones CM, Miller TL, Grutter AS, Cribb TH (2008) Natatory-stage cymothoid isopods: description, molecular identification and evolution of attachment. Int J Parasitol 38:477–491. doi:10.1016/j.ijpara.2007.07.013

    Article  CAS  Google Scholar 

  • Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780. doi:10.1093/molbev/mst010

    Article  CAS  Google Scholar 

  • Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, Thierer T, Ashton B, Meintjes P, Drummond A (2012) Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647–1649. doi:10.1093/bioinformatics/bts199

    Article  Google Scholar 

  • Ketmaier V, Joyce DA, Horton T, Mariani S (2008) A molecular phylogenetic framework for the evolution of parasitic strategies in cymothoid isopods (Crustacea). J Zool Syst Evol Res 46:19–23. doi:10.1111/j.1439-0469.2007.00423.x

    Google Scholar 

  • Lincoln R (1972) A new species of Lironeca (Isopoda; Cymothoidae) parasitic on cichlid fishes in Lake Tanganyika. Bull Br Mus Nat Hist Zool 21:329–337

    Google Scholar 

  • Maddison WP, Maddison DR (2015) Mesquite: a modular system for evolutionary analysis version 3.04. http://mesquiteproject.org. Accessed 13 Dec 2016

  • Martin MB (2015) Taxonomy and phylogeny of the buccal-attaching Cymothoidae (Crustacea: Isopoda) of Australia. Dissertation, University of Tasmania

  • Mindell D, Sorenson M, Dimcheff D, Hasegawa M, Ast J, Yuri T (1999) Interordinal relationships of birds and other reptiles based on whole mitochondrial genomes. Syst Biol 48:138–152

    Article  CAS  Google Scholar 

  • Nair GA, Nair NB (1983) Effect of infestation with the isopod, Alitropus typus M. Edwards (Crustacea: Flabellifera: Aegidae) on the haematological parameters of the host fish, Channa striatus (Bloch). Aquaculture 30:11–19. doi:10.1016/0044-8486(83)90147-3

    Article  CAS  Google Scholar 

  • Nakabo T (2013) Fishes of Japan with pictorial keys to the species. Tokai University Press, Kanagawa

    Google Scholar 

  • Near TJ, Eytan RI, Dornburg A, Kuhn KL, Moore JA, Davis MP, Wainwright PC, Friedman M, Smith WL (2012) Resolution of ray-finned fish phylogeny and timing of diversification. Proc Natl Acad Sci USA 109:13698–13703. doi:10.1073/pnas.1206625109

    Article  CAS  Google Scholar 

  • Nelson JS, Grande TC, Wilson MVH (2016) Fishes of the world. Wiley, Hoboken

    Book  Google Scholar 

  • Phillips MJ, Penny D (2003) The root of the mammalian tree inferred from whole mitochondrial genomes. Mol Phylogenet Evol 28:171–185. doi:10.1016/S1055-7903(03)00057-5

    Article  CAS  Google Scholar 

  • Pillai NK (1967) Littoral and parasitic isopods from Kerala: families Eurydicidae, Corallanidae and Aegidae-2. J Bombay Nat Hist Soc 64:267–283

    Google Scholar 

  • Ricklefs RE, Outlaw DC, Svensson-Coelho M, Medeiros MCI, Ellis VA, Latta S (2014) Species formation by host shifting in avian malaria parasites. Proc Natl Acad Sci USA 111:14816–14821. doi:10.1073/pnas.1416356111

    Article  CAS  Google Scholar 

  • Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542. doi:10.1093/sysbio/sys029

    Article  Google Scholar 

  • Rosenthal A, Coutelle O, Craxton M (1993) Large-scale production of DNA sequencing templates by microtitre format PCR. Nucl Acids Res 21:173–174. doi:10.1093/nar/21.1.173

    Article  CAS  Google Scholar 

  • Saunders B (2012) Discovery of Australia’s fishes: a history of Australian ichthyology to 1930. CSIRO Publishing Collingwood, VIC

    Google Scholar 

  • Simon C, Frati F, Beckenbach A, Crespi B, Liu H, Floors P (1994) Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Ann Entomol Soc Am 87:651–701

    Article  CAS  Google Scholar 

  • Smit NJ, Bruce NL, Hadfield KA (2014) Global diversity of fish parasitic isopod crustaceans of the family Cymothoidae. Int J Parasitol Parasit Wildl 3:188–197. doi:10.1016/j.ijppaw.2014.03.004

    Article  Google Scholar 

  • Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313. doi:10.1093/bioinformatics/btu033

    Article  CAS  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729. doi:10.1093/molbev/mst197

    Article  CAS  Google Scholar 

  • Tanabe AS (2011) Kakusan4 and Aminosan: two programs for comparing nonpartitioned, proportional and separate models for combined molecular phylogenetic analyses of multilocus sequence data. Mol Ecol Resour 11:914–921. doi:10.1111/j.1755-0998.2011.03021.x

    Article  Google Scholar 

  • Tarrío R, Rodríguez-Trelles F, Ayala FJ (2001) Shared nucleotide composition biases among species and their impact on phylogenetic reconstructions of the Drosophilidae. Mol Biol Evol 18:1464–1473. doi:10.1093/oxfordjournals.molbev.a003932

    Article  Google Scholar 

  • Thatcher VE (2006) Isopoda. In: Thatcher VE (ed) Amazon fish parasites. Pensoft Pub, Sofia, pp 416–453

    Google Scholar 

  • Trilles J-P, Hipeau-Jacquotte R (2012) Symbiosis and parasitism in the Crustacea. In: Forest J, von Vaupel Klein JC (eds) Treatise on zoology—anatomy, taxonomy, biology. The Crustacea. Brill, Leiden, pp 239–317. doi:10.1163/9789004188259_006

    Chapter  Google Scholar 

  • Tsai M-L, Dai C-F (1999) Ichthyoxenus fushanensis, new species (Isopoda: Cymothoidae), parasite of the fresh-water fish Varicorhinus barbatulus from northern Taiwan. J Crustacean Biol 19:917–923. doi:10.1163/193724099X00600

    Article  Google Scholar 

  • Wilson GDF, Paterson JR, Kear BP (2011) Fossil isopods associated with a fish skeleton from the Lower Cretaceous of Queensland, Australia—direct evidence of a scavenging lifestyle in Mesozoic Cymothoida. Palaeontology 54:1053–1068. doi:10.1111/j.1475-4983.2011.01095.x

    Article  Google Scholar 

  • Yamano H, Yamauchi T, Hosoya K (2011) A new host record of Ichthyoxenus amurensis (Crustacea: Isopoda: Cymothoidae) from the Amur bitterling Rhodeus sericeus (Cypriniformes: Cyprinidae). Limnology 12:103–106. doi:10.1007/s10201-010-0325-1

    Article  Google Scholar 

  • Zietara MS, Lumme J (2002) Speciation by host switch and adaptive radiation in a fish parasite genus Gyrodactylus (monogenea, gyrodactylidae). Evolution 56:2445–2458. doi:10.1111/j.0014-3820.2002.tb00170.x

    Article  Google Scholar 

Download references

Acknowledgements

We sincerely thank J. Akahane, G. Akinaga, S. N. Chiba, R. Dohi, A. Fujii, K. Goto, H. Hamaoka, T. Hattori, T. Hayakawa, N. Hayashida, I. Hirabayashi, H. Hirasaka, S. Isozaki, G. Itani, M. Ito, M. Ito, H. Matsuba, Kanagawa Prefectural Museum of Natural History, H. Katahira, E. Katayama, Y. Kimura, K. Koeda, T. Kunishima, H. Mishima, K. Miyamoto, Y. Miyazaki, T. Moritaki, F. Nakao, N. Nakayama, M. Nishiguchi, M. Ogishi, J. Ohtomi, T. Oka, T. Okada, I. Oura, K. Sakai, T. Sakai, T. Sakumoto, M. Sakurai, T. Sato, T. P. Satoh, Seikai National Fisheries Research Institute, H. Senou, T. Shigeta, S. Sodeyama, R. Shimomura, T. Shinonome, K. Tachihara, R. Tagashira, M. Takami, T. Takaya, F. Tashiro, Toba Aquarium, Tohoku National Fisheries Research Institute, T. Tsukayama, A. Umemoto, M. Utsunomiya, Y. Yagi, A. Yasui, and S. Yoshimi for providing specimens and/or assisting sample collection. Photos in Figs. 1, 4 courtesy of I. Seidel and H. Hirasaka. We are also grateful to members of the Maneno Team (Tanganyika Research Project Team) and staffs of Lake Tanganyika Research Unit, Mpulungu, Zambia, for their support. Research in Lake Tanganyika was conducted under permission from the Zambian Ministry of Agriculture, Food, and Fisheries. This study was supported by Showa Seitoku Memorial Foundation (Grant No. H26) and the Mikimoto Fund for marine Ecology (Grant No. H24).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroki Hata.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical standard

All experiments were conducted in accordance with the Ethical Guidelines for Animal Experiments of Ehime University.

Additional information

Responsible Editor: T. Reusch.

Reviewed by C. Boyko and an undisclosed expert.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 2714 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hata, H., Sogabe, A., Tada, S. et al. Molecular phylogeny of obligate fish parasites of the family Cymothoidae (Isopoda, Crustacea): evolution of the attachment mode to host fish and the habitat shift from saline water to freshwater. Mar Biol 164, 105 (2017). https://doi.org/10.1007/s00227-017-3138-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00227-017-3138-5

Keywords

Navigation