Skip to main content
Log in

Epibiont load causes sinking of viable kelp rafts: seasonal variation in floating persistence of giant kelp Macrocystis pyrifera

  • Original paper
  • Published:
Marine Biology Aims and scope Submit manuscript

This article has been updated

Abstract

Floating seaweeds serve as dispersal agents for various organisms, but their survival at the sea surface may be compromised by physiological stress and epibiont overgrowth. Most previous experiments have been conducted in laboratory mesocosms where epibiont colonization is limited, but in their natural environment floating seaweeds are frequently overgrown by epibionts, which might negatively affect seaweeds or even cause their sinking. To test this hypothesis, we conducted field experiments in northern-central Chile (30°S) with floating giant kelps Macrocystis pyrifera to determine the time until sinking, epibiotic bryozoan load, and their physiological status across different seasons. Floating sporophytes persisted for at least 4 weeks at the sea surface and sank in all seasons after bryozoan loads exceeded 40 % of the raft biomass. At the time of sinking, the kelp rafts were physiologically viable and biomass losses were relatively minor. In autumn, kelp rafts stayed afloat for an average of 41 days (maximum: 52 days) during moderate environmental conditions (cool water temperature and moderate solar radiation) and slow growth of epibionts. However, higher water temperatures in summer seemed to enhance the growth of epibiotic bryozoans but not the growth of M. pyrifera, causing earlier sinking. The results indicate that the high growth rates of encrusting bryozoans provoke sinking of the kelp rafts, representing the first demonstrated case of epibiont-induced sinking of otherwise healthy floating seaweeds. Increasing global temperatures may enhance epibiont growth and thereby suppress the dispersal potential of floating seaweeds, even of species known for their high acclimation potential to the conditions at the sea surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Change history

  • 01 February 2024

    The supplementary material has been added.

References

  • Allakhverdiev SI, Kreslavski VD, Klimov VV, Los DA, Carpentier R, Mohanty P (2008) Heat stress: an overview of molecular responses in photosynthesis. Photosynth Res 98:541–550

    Article  CAS  PubMed  Google Scholar 

  • Amui-Vedel AM, Hayward PJ, Porter JS (2007) Zooid size and growth rate of the bryozoan Cryptosula pallasiana Moll in relation to temperature, in culture and in its natural environment. J Exp Mar Biol Ecol 353:1–12

    Article  Google Scholar 

  • Bartsch I, Wiencke C, Laepple T (2012) Global seaweed biogeography under a changing climate: the prospected effects of temperature. In: Wiencke C, Bischof K (eds) Seaweed biology. Ecological studies 219. Springer, Berlin, pp 383–406

    Google Scholar 

  • Bartsch I, Vogt J, Pehlke C, Hanelt D (2013) Prevailing sea surface temperatures inhibit summer reproduction of the kelp Laminaria digitata at Helgoland (North Sea). J Phycol 49:1061–1073

    Article  PubMed  Google Scholar 

  • Bischof K, Hanelt D, Tüg H, Karsten U, Brouwer PEM, Wiencke C (1998a) Acclimation of brown algal photosynthesis to ultraviolet radiation in arctic coastal waters (Spitsbergen, Norway). Polar Biol 20:388–395

    Article  Google Scholar 

  • Bischof K, Hanelt D, Wiencke C (1998b) UV-radiation can affect depth-zonation of Antarctic macroalgae. Mar Biol 131:597–605

    Article  Google Scholar 

  • Buschmann AH, Vásquez JA, Osorio P, Reyes E, Filún L, Hernández-González MC, Vega A (2004) The effect of water movement, temperature and salinity on abundance and reproductive patterns of Macrocystis spp. (Phaeophyta) at different latitudes in Chile. Mar Biol 145:849–862

    Article  Google Scholar 

  • Buschmann AH, Pereda SV, Varela DA, Rodríguez-Maulén J, López A, González-Crvajal L, Schilling M, Henríquez-Tejo EA, Hernández-González M (2014) Ecophysiological plasticity of annual populations of giant kelp (Macrocystis pyrifera) in a seasonally variable coastal environment in the Northern Patagonian Inner Seas of Southern Chile. J Appl Phycol 26:837–847

    Article  Google Scholar 

  • Cancino JM, Muñoz J, Muñoz M, Orellana MC (1987) Effects of the bryozoan Membranipora tuberculata (Bosc.) on the photosynthesis and growth of Gelidium rex Santelices et Abbott. J Exp Mar Biol Ecol 113:105–112

    Article  Google Scholar 

  • Clarkin E, Maggs CA, Allcock AL, John MP (2012) Environment, not characteristics of individual algal rafts, affects composition of rafting invertebrate assemblages in Irish coastal waters. Mar Ecol Prog Ser 470:31–40

    Article  Google Scholar 

  • Colombo-Pallotta MF, García-Mendoza E, Ladah LB (2006) Photosynthetic performance, light absorption, and pigment composition of Macrocystis pyrifera (Laminariales, Phaeophyceae) blades from different depths. J Phycol 42:1225–1234

    Article  CAS  Google Scholar 

  • Davison IR, Pearson GA (1996) Stress tolerance in intertidal seaweeds. J Phycol 32:197–211

    Article  Google Scholar 

  • Dayton PK (1985) The structure and regulation of some South American kelp communities. Ecol Monogr 55:447–468

    Article  Google Scholar 

  • Dixon J, Schroeter SC, Kastendiek J (1981) Effects of the encrusting bryozoans, Menbranipora membranacea, on the loss of blades and fronds by the giant kelp, Macrocystis pyrifera (Laminariales). J Phycol 17:341–345

    Article  Google Scholar 

  • Edgar GJ (1987) Dispersal of fauna and floral propagules associated with drifting Macrocystis pyrifera plants. Mar Biol 95:599–610

    Article  Google Scholar 

  • Filbee-Dexter K, Feehan C, Scheibling R (2016) Large-scale degradation of a kelp ecosystem in an ocean warming hotspot. Mar Ecol Prog Ser 543:141–152

    Article  CAS  Google Scholar 

  • Fraser CI, Nikula R, Spencer HG, Waters JM (2009) Kelp genes reveal effects of subantarctic sea ice during Last Glacial Maximum. Proc Natl Acad Sci USA 106:3249–3253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fraser CI, Thiel M, Spencer HG, Waters JM (2010) Contemporary habitat discontinuity and historic glacial ice drive genetic divergence in Chilean kelp. BMC Evol Biol 10:203

    Article  PubMed  PubMed Central  Google Scholar 

  • Fraser CI, Nikula R, Waters JM (2011) Oceanic rafting by a coastal community. Proc R Lond B Biol 278:649–655

    Google Scholar 

  • Gerard VA (1984) The light environment in a giant kelp forest: influence of Macrocystis pyrifera on spatial and temporal variability. Mar Biol 84:189–195

    Article  Google Scholar 

  • Gerard VA (1986) Photosynthetic characteristics of giant kelp (Macrocystis pyrifera) determined in situ. Mar Biol 90:473–482

    Article  Google Scholar 

  • Gómez I, Huovinen P (2011) Morpho-functional patterns and zonation of South Chilean seaweeds: the importance of photosynthetic and bio-optical traits. Mar Ecol Prog Ser 422:77–91

    Article  Google Scholar 

  • Gómez I, Figueroa FL, Ulloa N, Morales V, Lovengreen C, Huovinen P, Hess S (2004) Photosynthesis in 18 intertidal macroalgae from Southern Chile. Mar Ecol Prog Ser 270:103–116

    Article  Google Scholar 

  • Govindjee (1995) Sixty-three years since Kautsky: chlorophyll a fluorescence. Aust J Plant Physiol 22:131–160

    CAS  Google Scholar 

  • Graham MH, Vásquez JA, Buschmann AH (2007) Global ecology of the giant kelp Macrocystis: from ecotypes to ecosystems. Oceanogr Mar Biol 45:39–88

    Google Scholar 

  • Graiff A, Karsten U, Meyer S, Pfender D, Tala F, Thiel M (2013) Seasonal variation in floating persistence of detached Durvillaea antarctica (Chamisso) Hariot thalli. Bot Mar 56:3–14

    Article  Google Scholar 

  • Gutow L, Beermann J, Buschbaum C, Rivadeneira MM, Thiel M (2015) Castaways can’t be choosers—Homogenization of rafting assemblages on floating seaweeds. J Sea Res 95:161–171

    Article  Google Scholar 

  • Hanelt D, Wiencke C, Nultsch W (1997a) Influence of UV radiation on the photosynthesis of Arctic macroalgae in the field. J Photochem Photobiol 38:40–47

    Article  CAS  Google Scholar 

  • Hanelt D, Melchersmann B, Wiencke C, Nultsch W (1997b) Effects of high light stress on photosynthesis of polar macroalgae in relation to depth distribution. Mar Ecol Prog Ser 149:255–266

    Article  CAS  Google Scholar 

  • Helmuth B, Veit RR, Holberton R (1994) Long-distance dispersal of a subantarctic brooding bivalve (Gaimardia trapesina) by kelp-rafting. Mar Biol 120:421–426

    Article  Google Scholar 

  • Hepburn CD, Hurd CL (2005) Conditional mutualism between the giant kelp Macocystis pyrifera and colonial epifauna. Mar Ecol Prog Ser 302:37–48

    Article  Google Scholar 

  • Hepburn CD, Hurd CL, Frew RD (2006) Colony structure and seasonal differences in light and nitrogen modify the impact of sessile epifauna on the giant kelp Macrocystis pyrifera (L.) C Agardh. Hydrobiologia 560:373–384

    Article  Google Scholar 

  • Hernández-Carmona G, Hughes B, Graham MH (2006) Reproductive longevity of drifting kelp Macrocystis pyrifera (Phaeoohyceae) in Monterey Bay, USA. J Phycol 42:1199–1207

    Article  Google Scholar 

  • Hinojosa IA, González E, Ugalde P, Valdivia N, Macaya E, Thiel M (2007) Distribution and abundance of floating seaweeds and their associated peracarid fauna in the fjords and channels of the XI. Region, Chile. Cienc Tecnol Mar (Chile) 30:37–50

    Google Scholar 

  • Hinojosa IA, Pizarro M, Ramos M, Thiel M (2010) Spatial and temporal distribution of floating kelp in the channels and fjords of southern Chile. Estuar Coast Shelf Sci 87:367–377

    Article  Google Scholar 

  • Hinojosa IA, Rivadeneira MM, Thiel M (2011) Temporal and spatial distribution of floating objects in coastal waters of central-southern Chile and Patagonian fjords. Cont Shelf Res 31:172–186

    Article  Google Scholar 

  • Hirata T, Tanaka J, Iwami T, Ohmi T, Dazai A, Aoki M, Ueda H, Tsuchiya Y, Sato T, Yokohama Y (2001) Ecological studies on the community of drifting seaweeds in the south-eastern coastal waters of Izu Peninsula, central Japan. I. Seasonal changes of plants in species composition, appearance, number of species and size. Phycol Res 49:215–229

    Article  Google Scholar 

  • Hobday AJ (2000a) Abundance and dispersal of drifting kelp Macrocystis pyrifera rafts in the Southern California Bight. Mar Ecol Prog Ser 195:101–116

    Article  Google Scholar 

  • Hobday AJ (2000b) Persistence and transport of fauna on drifting kelp (Macrocystis pyrifera (L.) C. Agardh) rafts in the Southern California Bight. J Exp Mar Biol Ecol 253:75–96

    Article  CAS  PubMed  Google Scholar 

  • Hobday AJ (2000c) Age of drifting Macrocystis pyrifera (L.) C. Agardh rafts in the Southern California Bight. J Exp Mar Biol Ecol 253:97–114

    Article  CAS  PubMed  Google Scholar 

  • Hurd CL, Durante KM, Chia F-S, Harrison PJ (1994) Effect of bryozoan colonization on inorganic nitrogen acquisition by the kelps Agarurn fimbriatum and Macrocystis integrifolia. Mar Biol 121:167–173

    Article  Google Scholar 

  • Hurd CL, Durante KM, Harrison PJ (2000) Influence of bryozoans colonization on the physiology of the kelp Macrocystis integrifolia (Laminariales, Phaeophyta) from nitrogen-rich and -poor sites in Barklay Sound, British Columbia, Canada. Phycologia 39:435–440

    Article  Google Scholar 

  • Ingólfsson A (1995) Floating clumps of seaweed around Iceland: natural microcosms and a means of dispersal for shore fauna. Mar Biol 122:13–21

    Article  Google Scholar 

  • Ingólfsson A (1998) Dynamics of macrofaunal communities of floating seaweed clumps off western Iceland: a study of patches on the surface of the sea. J Exp Mar Biol Ecol 231:119–137

    Article  Google Scholar 

  • IPCC (2013) Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Kingsford MJ (1992) Drift algae and small fish in coastal waters of northeastern New Zealand. Mar Ecol Prog Ser 80:41–55

    Article  Google Scholar 

  • Kingsford MJ (1995) Drift algae—a contribution to near-shore habitat complexity in the pelagic environment and an attractant for fish. Mar Ecol Prog Ser 116:297–301

    Article  Google Scholar 

  • Koch K, Thiel M, Hagen W, Graeve M, Gómez I, Jofre D, Hofmann LC, Tala F, Bischof K (2016) Short- and long-term acclimation patterns of the giant kelp Macrocystis pyrifera (Laminariales; Phaeophyceae) along a depth gradient. J Phycol 273:260–273

    Article  Google Scholar 

  • Lima FP, Wethey DS (2012) Three decades of high-resolution coastal sea surface temperatures reveal more than warming. Nat Commun 3:1–13

    Article  Google Scholar 

  • Liuzzi MG, López Gappa J (2008) The distribution of colonies of the bryozoan Antarctothoa bougainvillei on the red alga Hymenena laciniata. Hydrobiologia 605:65–73

    Article  Google Scholar 

  • Macaya EC, Zuccarello GC (2010) Genetic structure of the giant kelp Macrocystis pyrifera along the southeastern Pacific. Mar Ecol Prog Ser 420:103–112

    Article  Google Scholar 

  • Macaya EC, Boltaña S, Hinojosa IA, Macchiavello JE, Valdivia NA, Vásquez N, Buschmann AH, Vásquez J, Vega JMA, Thiel M (2005) Presence of sporophylls in floating kelp rafts of Macrocystis spp. (Phaeophyceae) along the Chilean Pacific coast. J Phycol 41:915–922

    Article  Google Scholar 

  • MacReadie PI, Bishop MJ, Booth DJ (2011) Implications of climate change for macrophytic rafts and their hitchhikers. Mar Ecol Prog Ser 443:285–292

    Article  Google Scholar 

  • Menon NR (1972) Heat tolerance, growth and regeneration in three North Sea bryozoans exposed to different constant temperatures. Mar Biol 15:1–11

    Article  Google Scholar 

  • Mercado JM, Carmona R, Niell FX (1998) Bryozoans increase available CO2 for photosynthesis in Gelidium sesquipedale (Rhodophyceae). J Phycol 34:925–927

    Article  Google Scholar 

  • Muhlin JF, Engel CR, Stessel R, Weatherbee RA, Brawley SH (2008) The influence of coastal topography, circulation patterns, and rafting in structuring populations of an intertidal alga. Mol Ecol 17:1198–1210

    Article  CAS  PubMed  Google Scholar 

  • Muñoz J, Cancino JM, Molina MX (1991) Effect of encrusting bryozoans on the physiology of their algal substratum. J Mar Biol Assoc UK 71:877–882

    Article  Google Scholar 

  • Pacheco AS, Laudien J, Thiel M, Oliva M, Heilmayer O (2011) Succession and seasonal onset of colonization in subtidal hard-bottom communities off northern Chile. Mar Ecol 32:75–87

    Article  Google Scholar 

  • Roleda MY, Dethleff D (2011) Storm-generated sediment deposition on rocky shores: simulating burial effects on the physiology and morphology of Saccharina latissima sporophytes. Mar Biol Res 7:213–223

    Article  Google Scholar 

  • Roleda MY, Dethleff D, Wiencke C (2008) Transient sediment load on blades of Arctic Saccharina latissima can mitigate UV radiation effect on photosynthesis. Polar Biol 31:765–769

    Article  Google Scholar 

  • Rothäusler E, Gómez I, Hinojosa IA, Karsten U, Tala F, Thiel M (2009) Effect of temperature and grazing on growth and reproduction of floating Macrocystis spp. (Phaeophyceae) along a latitudinal gradient. J Phycol 45:547–559

    Article  PubMed  Google Scholar 

  • Rothäusler E, Gómez I, Karsten U, Tala F, Thiel M (2011a) Physiological acclimation of floating Macrocystis pyrifera to temperature and irradiance ensures long-term persistence at the sea surface at mid-latitudes. J Exp Mar Biol Ecol 405:33–41

    Article  Google Scholar 

  • Rothäusler E, Gómez I, Karsten U, Tala F, Thiel M (2011b) UV-radiation versus grazing pressure: long-term floating of kelp rafts (Macrocystis pyrifera) is facilitated by efficient photoacclimation but undermined by grazing losses. Mar Biol 158:127–141

    Article  Google Scholar 

  • Rothäusler E, Gómez I, Hinojosa IA, Karsten U, Tala F, Thiel M (2011c) Physiological performance of floating giant kelp Macrocystis pyrifera (Phaeophycea): latitudinal variability in the effects of temperature and grazing. J Phycol 47:269–281

    Article  PubMed  Google Scholar 

  • Rothäusler E, Gómez I, Hinojosa IA, Karsten U, Miranda L, Tala F, Thiel M (2011d) Kelp rafts in the Humboldt Current: interplay of abiotic and biotic factors limit their floating persistence and dispersal potential. Limnol Oceanogr 56:1751–1763

    Article  Google Scholar 

  • Rothäusler E, Gutow L, Thiel M (2012) Floating seaweeds and their communities. In: Wiencke C, Bischof K (eds) Seaweed biology. Ecological studies 219. Springer, Berlin, pp 359–380

    Google Scholar 

  • R Development Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org/

  • Saier B, Chapman AS (2004) Crusts of the alien bryozoan Membranipora membranacea can negatively impact spore output from native kelps (Laminaria longicruris). Bot Mar 47:265–271

    Article  Google Scholar 

  • Salovius S, Bonsdorff E (2004) Effects of depth, sediment and grazers on the degradation of drifting filamentous algae (Cladophora glomerata and Pilayella littoralis). J Exp Mar Biol Ecol 298:93–109

    Article  Google Scholar 

  • Saunders M, Metaxas A (2008) High recruitment of the introduced bryozoan Membranipora membranacea is associated with kelp bed defoliation in Nova Scotia, Canada. Mar Ecol Prog Ser 369:139–151

    Article  Google Scholar 

  • Saunders MI, Metaxas A (2009) Effects of temperature, size, and food on the growth of Membranipora membranacea in laboratory and field studies. Mar Biol 156:2267–2276

    Article  Google Scholar 

  • Saunders MI, Metaxas A, Filgueira R (2010) Implications of warming temperatures for population outbreaks of a nonindigenous species (Membranipora membranacea, Bryozoa) in rocky subtidal ecosystems. Limnol Oceanogr 55:1627–1642

    Article  Google Scholar 

  • Scheibling RE, Gagnon P (2009) Temperature-mediated outbreak dynamics of the invasive bryozoan Membranipora membranacea in Nova Scotian kelp beds. Mar Ecol Prog Ser 390:1–13

    Article  Google Scholar 

  • Schreiber U, Bilger W, Neubauer C (1994) Chlorophyll fluorescence as a non-intrusive indicator for rapid assessment of in vivo photosynthesis. Ecol Stud 100:49–70

    CAS  Google Scholar 

  • Smith SDA (2002) Kelp rafts in the Southern Ocean. Glob Ecol Biogeogr 11:67–69

    Article  Google Scholar 

  • Tala F, Gómez I, Luna-Jorquera G, Thiel M (2013) Morphological, physiological and reproductive conditions of rafting bull kelp (Durvillaea antarctica) in northern-central Chile (30 S). Mar Biol 160:1339–1351

    Article  CAS  Google Scholar 

  • Tala F, Velásquez M, Macaya E, Mansilla A, Thiel M (2016) Latitudinal and seasonal effects on short-term acclimation of floating kelp species from the South-East Pacific. J Exp Mar Biol Ecol 483:31–41

    Article  Google Scholar 

  • Thiel M, Gutow L (2005a) The ecology of rafting in the marine environment I. The floating substrata. Oceanogr Mar Biol Annu Rev 42:181–264

    Google Scholar 

  • Thiel M, Gutow L (2005b) The ecology of rafting in the marine environment. II. The rafting organisms and community. Oceanogr Mar Biol Annu Rev 43:279–418

    Google Scholar 

  • Thiel M, Haye PA (2006) The ecology of rafting in the marine environment. III. Biogeographical and evolutionary consequences. Oceanogr Mar Biol Annu Rev 44:323–429

    Google Scholar 

  • Underwood AJ (1997) Experiments in ecology: their logical design and interpretation using analysis of variance. Cambridge University Press, Cambridge, pp 140–197

    Google Scholar 

  • Vandendriessche S, Keersmaecker G, Vincx M, Degraer S (2006) Food and habitat choice in floating seaweed clumps: the obligate opportunistic nature of the associated macrofauna. Mar Biol 149:1499–1507

    Article  Google Scholar 

  • Vandendriessche S, Vincx M, Degraer S (2007a) Floating seaweed and the influences of temperature, grazing and clump size on raft longevity—a microcosm study. J Exp Mar Biol Ecol 343:64–73

    Article  Google Scholar 

  • Vandendriessche S, Stienen EWM, Vincx M, Degraer S (2007b) Seabirds foraging at floating seaweeds in the Northeast Atlantic. Ardea 95:289–298

    Article  Google Scholar 

  • Walsby AE (1997) Modelling the daily integral of photosynthesis by phytoplankton: its dependence on the mean depth of the population. Hydrobiologia 349:65–74

    Article  CAS  Google Scholar 

  • Weidner M, Ziemens C (1975) Preadaptation of protein synthesis in wheat seedlings to high temperature. Plant Physiol 56:590–594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wernberg T, Russell BD, Thomsen MS, Gurgel CFD, Bradshaw CJA, Poloczanska ES, Connell SD (2011a) Seaweed communities in retreat from ocean warming. Curr Biol 21:1828–1832

    Article  CAS  PubMed  Google Scholar 

  • Wernberg T, Russell BD, Moore PJ, Ling SD, Smale DA, Campbell A, Coleman MA, Steinberg PD, Kendrick GA, Connell SD (2011b) Impacts of climate change in a global hotspot for temperate marine biodiversity and ocean warming. J Exp Mar Biol Ecol 400:7–16

    Article  Google Scholar 

  • Wernberg T, Smale DA, Tuya F, Thomsen MS, Langlois TJ, de Bettignies T, Bennett S, Rousseaux CS (2013) An extreme climatic event alters marine ecosystem structure in a global biodiversity hotspot. Nat Clim Change 3:78–82

    Article  Google Scholar 

  • Westermeier R, Möller P (1990) Population dynamics of Macrocystis pyrifera (L.) C. Agardh in the rocky intertidal of southern Chile. Bot Mar 33:363–367

    Article  Google Scholar 

  • Wichmann C-S, Hinojosa IA, Thiel M (2012) Floating kelps in Patagonian Fjords: an important vehicle for rafting invertebrates and its relevance for biogeography. Mar Biol 159:2035–2049

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are very grateful to David Pfender, David Jofré, Miguel Penna, German Penna, Freddy González, André-Philippe Drapeau Picard, and Lorena Jorquera for their help during the experiments. Marcelo Rivadeneira provided advice for some of the statistical analyses. This research was supported by FONDECYT Grants 1100749 and 1131023 to FT and MT. AG received financial support by the fellowship program PROMOS from the German Academic Exchange Service (DAAD), and MT was supported by the Chilean Millennium Initiative (Grant NC120030).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Thiel.

Ethics declarations

Conflict of interests

All authors declare that they have no conflict of interests.

Human and animals rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Responsible Editor: K. Bischof.

Reviewed by C. I. Fraser and A. H. Buschmann.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Graiff, A., Pantoja, J.F., Tala, F. et al. Epibiont load causes sinking of viable kelp rafts: seasonal variation in floating persistence of giant kelp Macrocystis pyrifera. Mar Biol 163, 191 (2016). https://doi.org/10.1007/s00227-016-2962-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00227-016-2962-3

Keywords

Navigation