Skip to main content
Log in

Family effects on the growth and survival of congeneric blue mussel larvae (Mytilus edulis and M. trossulus)

  • Original paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Intraspecific genetic variation is widely recognized to affect how bivalve larvae respond to variation in environmental conditions, but has been largely ignored in comparisons of larval performance between closely related sibling species. Replicates of five different full-sib families of larval blue mussels (Mytilus edulis and its more northerly congener, M. trossulus) were reared under different temperature (10, 13, and 17 °C) and food conditions in a full factorial design. Growth and survival were strongly affected by temperature, family, the interaction of family and temperature, and the three-way interaction of family, temperature, and food. Family means for days to 20 % survival ranged from 10.2 to 20.0 and did not cluster by species. The two M. trossulus families were intermediate in survival and ranked first and third for growth. The temperature by family interaction effect for survival was very strong, and the two M. trossulus families responded very differently to temperature manipulations. One M. trossulus family exhibited highest survival at 13 °C, while the other M. trossulus family and all three M. edulis families exhibited highest survival at 10 °C. By contrast, greatest growth consistently occurred at 17 °C, indicating that higher mortality in warmer water may be at least partially offset (at a population level) by more rapid growth in body size. The results illustrate the importance of assaying both growth and survival when evaluating environmental effects on larvae and the need to ensure a high level of genetic diversity when pools of larvae are used to study genetically similar species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bates JA, Innes DJ (1995) Genetic variation among populations of Mytilus spp. in eastern Newfoundland. Mar Biol 124:417–424. doi:10.1007/BF00363915

    Article  Google Scholar 

  • Beaumont ARG, Turner G, Wood AR, Skibinski DOF (2005) Laboratory hybridizations between Mytilus species and performance of pure species and hybrid veliger larvae at lowered salinities. J Mollusc Stud 3:303–306. doi:10.1093/mollus/eyi026

    Article  Google Scholar 

  • Bertram DF, Strathmann RR (1998) Effects of larval and maternal nutrition on growth and form of planktonic larvae. Ecology 79:315–327. doi:10.1890/0012-9658(1998)079[0315:EOMALN]2.0.CO;2

    Article  Google Scholar 

  • Bierne N, David P, Boudry P, Bonhomme F (2002) Assortative fertilization and selection at larval stage in the mussels Mytilus edulis and M. galloprovincialis. Evolution 56:292–298. doi:10.1111/j.0014-3820.2002.tb01339.x

    Article  Google Scholar 

  • Boecklen WJ, Howard DJ (1997) Genetic analysis of hybrid zones: numbers of markers and power of resolution. Ecology 78:2611–2616. doi:10.1890/0012-9658(1997)078[2611:GAOHZN]2.0.CO;2

    Article  Google Scholar 

  • Boudry P, Collet B, Cornette F, Hervouet V, Bonhomme F (2002) High variance in reproductive success of the Pacific oyster (Crassostrea gigas, Thunberg) revealed by microsatellite-based parentage analysis of multifactorial crosses. Aquaculture 204:283–296. doi:10.1016/S0044-8486(01)00841-9

    Article  Google Scholar 

  • Calabrese A (1969) Individual and combined effects of salinity and temperature on embryos and larvae of the coot clam, Mulinia lateralis (Say). Biol Bull 137:417–428. doi:10.2307/1540164

    Article  Google Scholar 

  • Cataldo D, Boltovskoy D, Hermosa JL, Canzi C (2005) Temperature-dependent rates of larval development in Limnoperna fortunei (Bivalvia: Mytilidae). J Mollusc Stud 71:41–46. doi:10.1093/mollus/eyi005

    Article  Google Scholar 

  • Curole JP, Meyer E, Manahan DT, Hedgecock D (2010) Unequal and genotype-dependent expression of mitochondrial genes in larvae of the Pacific Oyster Crassostrea gigas. Biol Bull 218:122–131

    CAS  Google Scholar 

  • de Albuquerque MCP, Ferreira JF, Salvador GC, Turini C (2012) Influence of temperature and salinity on survival and growth of the pearl oyster larvae. Boletim Inst Pesca 38:189–197

    Google Scholar 

  • Eierman LE, Hare MP (2013) Survival of oyster larvae in different salinities depends on source population within an estuary. J Exp Mar Biol Ecol 449:61–68. doi:10.1016/j.jembe.2013.08.015

    Article  Google Scholar 

  • Gilg MR, Hilbish TJ (2003) Patterns of larval dispersal and their effect on the maintenance of a blue mussel hybrid zone in southwestern England. Evolution 57:1061–1077. doi:10.1111/j.0014-3820.2003.tb00316.x

    Article  Google Scholar 

  • Gilg MR, O’Connor M, Norris R, Hilbish TJ (2009) Maintenance of parental populations bordering a blue mussel hybrid zone by post-settlement selection. J Mollusc Stud 75:207–214. doi:10.1093/mollus/eyp016

    Article  Google Scholar 

  • Hayhurst S, Rawson PD (2009) Species-specific variation in larval survival and patterns of distribution for the blue mussels Mytilus edulis and Mytilus trossulus in the Gulf of Maine. J Mollusc Stud 75:215–222. doi:10.1093/mollus/eyp019

    Article  Google Scholar 

  • Heath DD, Rawson PD, Hilbish TJ (1995) PCR-based nuclear markers identify alien blue mussel (Mytilus spp.) genotypes on the west coast of Canada. Can J Fish Aquat Sci 52:2621–2627. doi:10.1139/f95-851

    Article  CAS  Google Scholar 

  • Hedgecock D, Pudovkin AI (2011) Sweepstakes reproductive success in highly fecund marine fish and shellfish: a review and commentary. Bull Mar Sci 87:971–1002. doi:10.5343/bms.2010.1051

    Article  Google Scholar 

  • Hedgecock D, Lin J-Z, DeCola S, Haudenschild CD, Meyer E, Manahan DT, Bowen B (2007) Transcriptomic analysis of growth heterosis in larval Pacific oysters (Crassostrea gigas). Proc Nat Acad Sci 104:2313–2318. doi:10.1073/pnas.0610880104

    Article  CAS  Google Scholar 

  • Hilbish TJ, Winn EP, Rawson PD (1993) Genetic variation and covariation during larval and juvenile growth in Mercenaria mercenaria. Mar Biol 115:97–104. doi:10.1007/BF00349390

    Article  Google Scholar 

  • Hoegh-Guldberg O, Pearse JS (1995) Temperature, food availability, and the development of marine invertebrate larvae. Int Comp Biol 35:415–425. doi:10.1093/icb/35.4.415

    Google Scholar 

  • Innes DJ, Haley LE (1977) Genetic aspects of larval growth under reduced salinity in Mytilus edulis. Biol Bull 153:312–321. doi:10.2307/1540437

    Article  Google Scholar 

  • Inzce L, Xue H, Wolff N, Xu D, Wilson C, Steneck R, Wahle R, Lawton P, Pettigrew N, Chen Y (2010) Connectivity of lobster (Homarus americanus) populations in the coastal Gulf of Maine: part II. Coupled biophysical dynamics. Fish Oceanogr 19:1–20. doi:10.1111/j.1365-2419.2009.00522.x

    Article  Google Scholar 

  • Leighton DL (1972) Laboratory observations on the early growth of the abalone, Haliotis sorenseni, and the effect of temperature on larval development and settling success. Fish Bull 70:373–381

    Google Scholar 

  • Li G, Hedgecock D (1998) Genetic heterogeneity, detected by PCR-SSCP, among samples of Pacific oyster (Crassostrea gigas) supports the hypothesis of large variance in reproductive success. Can J Fish Aquat Sci 55:1025–1033. doi:10.1139/f97-312

    Article  CAS  Google Scholar 

  • Lima GM, Pechenik JA (1985) The influence of temperature on growth rate and length of larval life of the gastropod, Crepidula plana Say. J Exp Mar Biol Ecol 90:55–71. doi:10.1016/0022-0981(85)90074-7

    Article  Google Scholar 

  • Lough G (1975) A reevaluation of the combined effects of temperature and salinity on survival and growth of bivalve larvae using response surface techniques. Fish Bull 73:86–94

    Google Scholar 

  • Mallet AL, Carver CE (1995) Comparative growth and survival patterns of Mytilus trossulus and Mytilus edulis in Atlantic Canada. Can J Fish Aquat Sci 52:1873–1880. doi:10.1139/f95-780

    Article  Google Scholar 

  • Maloy AP, Barber BJ, Rawson PD (2003) Gametogenesis in a sympatric population of blue mussels, Mytilus edulis and Mytilus trossulus, from Cobscook Bay (USA). J Shell Res 22:119–123

    Google Scholar 

  • Marshall R, McKinley S, Pearce CM (2010) Effects of larval nutrition on growth and survival in bivalves. Rev Aquac 2:33–55. doi:10.1111/j.1753-5131.2010.01022.x

    Article  Google Scholar 

  • Matson SE, Davis JP, Chew KK (2003) Laboratory hybridization of the mussels, Mytilus trossulus and M. galloprovincialis: larval growth, survival and early development. J Shell Res 22:423–430

    Google Scholar 

  • Nevejan N, Davis J, Little K, Kiliona A (2007) Use of a formulated diet for mussel spat Mytilus galloprovincialis (Lamarck 1819) in a commercial hatchery. J Shell Res 26:357–363. doi:10.2983/0730-8000(2007)26[357:UOAFDF]2.0.CO;2

    Article  Google Scholar 

  • Pace DA, Manahan DT (2007) Efficiencies and costs of larval growth in different food environments (Asteroidea: Asterina miniata). J Exp Mar Biol Ecol 353:89–106. doi:10.1016/j.jembe.2007.09.005

    Article  Google Scholar 

  • Pace DA, Marsh AG, Leong PK, Green AJ, Hedgecock D, Manahan DT (2006) Physiological bases of genetically determined variation in growth of marine invertebrate larvae: a study of growth heterosis in the bivalve Crassostrea gigas. J Exp Mar Biol Ecol 335:188–209. doi:10.1016/j.jembe.2006.03.005

    Article  Google Scholar 

  • Pechenik JA, Tyrell AS (2015) Larval diet alters larval growth rates and post-metamorphic performance in the marine gastropod Crepidula fornicata. Mar Biol 162:1597–1610. doi:10.1007/s00227-015-2696-7

    Article  Google Scholar 

  • Pechenik JA, Eyster LS, Widdows J, Bayne BL (1990) The influence of food concentration and temperature on growth and morphological differentiation of blue mussel Mytilus edulis L. larvae. J Exp Mar Biol Ecol 136:47–64. doi:10.1016/0022-0981(90)90099-X

    Article  Google Scholar 

  • Pettersen AK, Turchini GM, Jahangard S, Ingram BA, Sherman CDH (2010) Effects of different dietary algae on survival, growth, settlement and fatty acid composition of blue mussel (Mytilus galloprovincialis) larvae. Aquaculture 309:115–124. doi:10.1016/j.aquaculture.2010.09.024

    Article  CAS  Google Scholar 

  • Rawson PD, Joyner KL, Meetze K, Hilbish TJ (1996a) Evidence of intragenic recombination within a novel genetic marker that distinguishes mussels in the Mytilus edulis species complex. Heredity 77:599–607. doi:10.1038/hdy.1996.187

    Article  CAS  Google Scholar 

  • Rawson PD, Secor CL, Hilbish TJ (1996b) The effects of natural hybridization on the regulation of doubly uniparental mtDNA inheritance in blue mussels (Mytilus spp.). Genetics 144:241–248

    CAS  Google Scholar 

  • Rawson PD, Hayhurst S, Vanscoyoc B (2001) Species composition of blue mussel populations in the northeastern Gulf of Maine. J Shell Res 20:31–38

    Google Scholar 

  • Rawson PD, Slaughter C, Yund PO (2003) Patterns of gamete incompatibility between the blue mussels Mytilus edulis and M. trossulus. Mar Biol 143:317–325. doi:10.1007/s00227-003-1084-x

    Article  Google Scholar 

  • Rawson PD, Yund PO, Lindsay SM (2007) Comment on “Divergent induced responses to an invasive predator in marine mussel populations”. Science 316:53b. doi:10.1126/science.1135099

    Article  Google Scholar 

  • Riginos C, Cunningham CW (2005) Local adaptation and species segregation in two mussel (Mytilus edulis × Mytilus trossulus) hybrid zones. Mol Ecol 14:381–400. doi:10.1111/j.1365-294X.2004.02379.x

    Article  CAS  Google Scholar 

  • Sanchez-Lazo C, Martinez-Pita I (2012) Effect of temperature on survival, growth and development of Mytilus galloprovincialis larvae. Aquac Res 43:1127–1133. doi:10.1111/j.1365-2109.2011.02916.x

    Article  Google Scholar 

  • Seutin G, Brawn J, Ricklefs RE, Bermingham E (1993) Genetic divergence among populations of a tropical passerine, the Streaked Saltator (Saltator albicollis). Auk 110:117–126

    Article  Google Scholar 

  • Shanks AL (2009) Pelagic larval duration and dispersal distance revisited. Biol Bull 216:373–385

    Google Scholar 

  • Slaughter C, McCartney MA, Yund PO (2008) A comparison of gamete compatibility between species in allopatric and sympatric populations of blue mussels. Biol Bull 214:57–66. doi:10.2307/25066660

    Article  Google Scholar 

  • Snedecor GW, Cochran WG (1980) Statistical methods, 7th edn. Iowa State University Press, Ames

    Google Scholar 

  • Talmadge SC, Gobler CJ (2011) Effects of elevated temperature and carbon dioxide on the growth and survival of larvae and juveniles of three species of Northwest Atlantic bivalves. PLoS One 6:e26941. doi:10.1371/journal.pone.0026941

    Article  Google Scholar 

  • Tamayo D, Ibarrola I, Urrutxurtu I, Navarro E (2014) Physiological bases of extreme growth rate differences in the spat of oyster (Crassostrea gigas). Mar Biol 161:1627–1637. doi:10.1007/s00227-014-2447-1

    Article  Google Scholar 

  • Tan S-H, Wong T-M (1996) Effect of salinity on hatching, larval growth, survival and settling in the tropical oyster Crassostrea belcheri (Sowby). Aquaculture 145:129–139. doi:10.1016/S0044-8486(96)01338-5

    Article  CAS  Google Scholar 

  • Taris N, Batista FM, Boudry P (2007) Evidence of response to unintended selection for faster development and inbreeding depression in Crassostrea gigas larvae. Aquaculture 272:S69–S79. doi:10.1016/j.aquaculture.2007.08.010

    Article  Google Scholar 

  • Tilburg CE, McCartney MA, Yund PO (2012) Across-shelf transport of bivalve larvae: can the interface between a coastal current and inshore waters act as an ecological barrier to larval dispersal? PLoS One 7:e48960. doi:10.1371/journal.pone.0048960

    Article  CAS  Google Scholar 

  • Toro J, Innes DJ, Thompson RJ (2004) Genetic variation among life-history stages of mussels in a Mytilus edulisM. trossulus hybrid zone. Mar Biol 145:713–725

    Google Scholar 

  • Toro JE, Oyarzun PA, Penaloza C, Alcapan A, Videla V, Tilleria J, Astorga M, Martinez V (2012) Production and performance of larvae and spat of pure and hybrid species of Mytilus chilensis and M. galloprovincialis from laboratory crosses. Lat Am J Aquat Res 40:243–247. doi:10.3856/vol40-issue1-fulltext-24

    Article  Google Scholar 

  • Verween A, Vincx M, Degraer S (2007) The effect of temperature and salinity on the survival of Mytilopsis leucophaeata larvae (Mollusca: Bivalvia): The search for environmental limits. J Exp Mar Biol Ecol 348:111–120. doi:10.1016/j.jembe.2007.04.011

    Article  Google Scholar 

  • Xue H, Incze L, Xu D, Wolff N, Pettigrew N (2008) Connectivity of lobster populations in the coastal Gulf of Maine part I: circulation and larval transport potential. Ecol Model 210:193–211. doi:10.1016/j.ecolmodel.2007.07.024

    Article  Google Scholar 

  • Yund P, Tilburg CE, McCartney MA (2015) Across-shelf distribution of blue mussel larvae in the northern Gulf of Maine: consequences for population connectivity and a species range boundary. R Soc Open Sci 2:150513. doi:10.1098/rsos.150513

    Article  Google Scholar 

Download references

Acknowledgments

We thank Nico Quaday, Chris Smith, and Molly Bangs for assistance with the maintenance of laboratory cultures and enumeration and measurement of larvae, Verna Wang for very quickly genotyping the parental mussels, the staff of the Downeast Institute for supplying phytoplankton, and three anonymous reviewers for helpful comments on the manuscript. Funding was provided by the National Science Foundation (OCE-12-33868, OCE-13-33755, and OCE-14-58188 to POY and OCE-09-61325 to MAM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip O. Yund.

Additional information

Responsible Editor: M.G. Chapman.

Reviewed by Undisclosed experts.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yund, P.O., McCartney, M.A. Family effects on the growth and survival of congeneric blue mussel larvae (Mytilus edulis and M. trossulus). Mar Biol 163, 76 (2016). https://doi.org/10.1007/s00227-016-2851-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00227-016-2851-9

Keywords

Navigation