Skip to main content
Log in

Day–night ecophysiology of the photosymbiotic bioeroding sponge Cliona orientalis Thiele, 1900

  • Original paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Marine bioerosion is projected to increase under future environmental conditions, and interest in investigating the ecological roles of bioeroding sponges has grown substantially over recent years. Cliona orientalis Thiele, 1900 is an important bioeroding sponge on Indo-Pacific coral reefs that belongs to the Cliona viridis species complex, which is a group of Clionaidae that are symbiotic with dinoflagellates of the genus Symbiodinium. The present study aimed to investigate the intracellular Symbiodinium and the holosymbiont of C. orientalis under a day–night cycle. Measurements of chlorophyll fluorescence confirmed significant day–night relocation of Symbiodinium by C. orientalis, in which Symbiodinium mostly resided at the surface during the day to enhance light availability. Under the light regime within C. orientalis, Symbiodinium displayed efficient photosynthesis as indicated by its oxygen production rate. At night, Symbiodinium was drawn deeper into the sponge. As a holosymbiont, C. orientalis did not significantly change net uptake of heterotrophic carbon between day and night. During the day, the host presumably received autotrophic carbon translocated from Symbiodinium and displayed faster bioerosion measured as dissolution of calcium carbonate. The present findings advance our understanding of how diurnal rhythms may influence energy acquisition strategies and ecological performance of a sponge–photosymbiont association.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bergman KM (1983) The distribution and ecological significance of the boring sponge Cliona viridis on the Great Barrier Reef, Australia. MSc thesis, McMaster University

  • Black CC, Burris JE (1983) Diurnal carbon-14 partitioning between zooxanthellae and the coral animal tissue of intact Seriatopora hystrix colonies. Mar Biol 75:117–120

    Article  CAS  Google Scholar 

  • Bond C (1992) Continuous cell movements rearrange anatomical structures in intact sponges. J Exp Zool 263:284–302

    Article  CAS  Google Scholar 

  • Brown BE, Ambarsari I, Warner ME, Fitt WK, Dunne RP, Gibb SW, Cummings DG (1999) Diurnal changes in photochemical efficiency and xanthophyll concentrations in shallow water reef corals: evidence for photoinhibition and photoprotection. Coral Reefs 18:99–105

    Article  Google Scholar 

  • Brümmer F, Pfannkuchen M, Baltz A, Hauser T, Thiel V (2008) Light inside sponges. J Exp Mar Biol Ecol 367:61–64

    Article  Google Scholar 

  • Cattaneo-Vietti R, Bavestrello G, Cerrano C, Sarà M, Benatti U, Giovine M, Gaino E (1996) Optical fibres in an Antarctic sponge. Nature 383:397–398

    Article  CAS  Google Scholar 

  • Chalker BE, Dunlap WC, Oliver JK (1983) Bathymetric adaptations of reef-building corals at Davies Reef, Great Barrier Reef, Australia. II. Light saturation curves for photosynthesis and respiration. J Exp Mar Biol Ecol 73:37–56

    Article  Google Scholar 

  • Consalvey M, Perkins RG, Paterson DM, Underwood GJC (2005) PAM fluorescence: a beginners guide for benthic diatomists. Diatom Res 20:1–22

    Article  Google Scholar 

  • Custódio MR, Hajdu E, Muricy G (2002) In vivo study of microsclere formation in sponges of the genus Mycale (Demospongiae, Poecilosclerida). Zoomorphology 121:203–211

    Article  Google Scholar 

  • Day RJ (1994) Algal symbiosis in Bunodeopsis: sea anemones with “auxiliary” structures. Biol Bull 186:182–194

    Article  Google Scholar 

  • Dickson AG, Afghan JD, Anderson GC (2003) Reference materials for oceanic CO2 analysis: a method for the certification of total alkalinity. Mar Chem 80:185–197

    Article  CAS  Google Scholar 

  • Falkowski PG, Raven JA (1997) Aquatic photosynthesis. Blackwell, Oxford

    Google Scholar 

  • Fang JKH, Schönberg CHL (2015) Carbonate budgets of coral reefs: recent developments in excavating sponge research. Reef Encounter 30:43–46

    Google Scholar 

  • Fang JKH, Mello-Athayde MA, Schönberg CHL, Kline DI, Hoegh-Guldberg O, Dove S (2013a) Sponge biomass and bioerosion rates increase under ocean warming and acidification. Glob Change Biol 19:3581–3591

    Article  Google Scholar 

  • Fang JKH, Schönberg CHL, Kline DI, Hoegh-Guldberg O, Dove S (2013b) Methods to quantify components of the excavating sponge Cliona orientalis Thiele, 1900. Mar Ecol 34:193–206

    Article  Google Scholar 

  • Fang JKH, Schönberg CHL, Mello-Athayde MA, Hoegh-Guldberg O, Dove S (2014) Effects of ocean warming and acidification on the energy budget of an excavating sponge. Glob Change Biol 20:1043–1054

    Article  Google Scholar 

  • Fitt WK, Cook CB (2001) Photoacclimation and the effect of the symbiotic environment on the photosynthetic response of symbiotic dinoflagellates in the tropical marine hydroid Myrionema amboinense. J Exp Mar Biol Ecol 256:15–31

    Article  Google Scholar 

  • Gaino E, Sarà M (1994) Siliceous spicules of Tethya seychellensis (Porifera) support the growth of a green alga: a possible light conducting system. Mar Ecol Prog Ser 108:147–151

    Article  Google Scholar 

  • Gaither MR, Rowan R (2010) Zooxanthellar symbiosis in planula larvae of the coral Pocillopora damicornis. J Exp Mar Biol Ecol 386:45–53

    Article  Google Scholar 

  • Glynn PW (1997) Bioerosion and coral reef growth: a dynamic balance. In: Birkeland C (ed) Life and death on coral reefs. Chapman and Hall, New York, pp 69–98

    Google Scholar 

  • Granados C, Camargo C, Zea S, Sánchez JA (2008) Phylogenetic relationships among zooxanthellae (Symbiodinium) associated to excavating sponges (Cliona spp.) reveal an unexpected lineage in the Caribbean. Mol Phylogenet Evol 49:554–560

    Article  CAS  Google Scholar 

  • Hill MS (1996) Symbiotic zooxanthellae enhance boring and growth rates of the tropical sponge Anthosigmella varians forma varians. Mar Biol 125:649–654

    Article  Google Scholar 

  • Hill M, Allenby A, Ramsby B, Schönberg C, Hill A (2011) Symbiodinium diversity among host clionaid sponges from Caribbean and Pacific reefs: evidence of heteroplasmy and putative host-specific symbiont lineages. Mol Phylogenet Evol 59:81–88

    Article  Google Scholar 

  • Hoegh-Guldberg O, Jones RJ (1999) Photoinhibition and photoprotection in symbiotic dinoflagellates from reef-building corals. Mar Ecol Prog Ser 183:73–86

    Article  Google Scholar 

  • Holmes KE (2000) Effects of eutrophication on bioeroding sponge communities with the description of new West Indian sponges, Cliona spp. (Porifera: Hadromerida: Clionadae). Invertebr Biol 119:125–138

    Article  Google Scholar 

  • Iglesias-Prieto R, Trench RK (1994) Acclimation and adaptation to irradiance in symbiotic dinoflagellates. I. Responses of the photosynthetic unit to changes in photon flux density. Mar Ecol Prog Ser 113:163–175

    Article  Google Scholar 

  • Jones RJ, Hoegh-Guldberg O (2001) Diurnal changes in the photochemical efficiency of the symbiotic dinoflagellates (Dinophyceae) of corals: photoprotection, photoinactivation and the relationship to coral bleaching. Plant Cell Environ 24:89–99

    Article  CAS  Google Scholar 

  • Kohler KE, Gill SM (2006) Coral point count with excel extensions (CPCe): a visual basic program for the determination of coral and substrate coverage using random point count methodology. Comput Geosci 32:1259–1269

    Article  Google Scholar 

  • LaJeunesse TC, Loh WKW, van Woesik R, Hoegh-Guldberg O, Schmidt GW, Fitt WK (2003) Low symbiont diversity in southern Great Barrier Reef corals, relative to those of the Caribbean. Limnol Oceanogr 48:2046–2054

    Article  Google Scholar 

  • López-Victoria M, Zea S, Weil E (2006) Competition for space between encrusting excavating Caribbean sponges and other coral reef organisms. Mar Ecol Prog Ser 312:113–121

    Article  Google Scholar 

  • Maldonado M, Ribes M, van Duyl FC (2012) Nutrient fluxes through sponges: biology, budgets, and ecological implications. In: Becerro MA, Uriz MJ, Maldonado M, Turon X (eds) Advances in marine biology, vol 62. Advances in sponge science: physiology, chemical and microbial diversity, biotechnology. Elsevier, London, pp 113–182

    Google Scholar 

  • Masuda K, Goto M, Maruyama T, Miyachi S (1993) Adaptation of solitary corals and their zooxanthellae to low light and UV radiation. Mar Biol 117:685–691

    Article  Google Scholar 

  • Muller-Parker G (1987) Seasonal variation in light-shade adaptation of natural populations of the symbiotic sea anemone Aiptasia pulchella (Carlgren, 1943) in Hawaii. J Exp Mar Biol Ecol 112:165–183

    Article  Google Scholar 

  • Muscatine L (1990) The role of symbiotic algae in carbon and energy flux in reef corals. In: Dubinsky Z (ed) Coral reefs. Ecosystems of the world 25. Elsevier, Amsterdam, pp 75–84

    Google Scholar 

  • Pettay DT, LaJeunesse TC (2009) Microsatellite loci for assessing genetic diversity, dispersal and clonality of coral symbionts in ‘stress-tolerant’ clade D Symbiodinium. Mol Ecol Resour 9:1022–1025

    Article  CAS  Google Scholar 

  • Platt T, Gallegos CL, Harrison WG (1980) Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton. J Mar Res 38:687–701

    Google Scholar 

  • Ralph PJ, Gademann R (2005) Rapid light curves: a powerful tool to assess photosynthetic activity. Aquat Bot 82:222–237

    Article  CAS  Google Scholar 

  • Rosell D, Uriz MJ (1992) Do associated zooxanthellae and the nature of the substratum affect survival, attachment and growth of Cliona viridis (Porifera: Hadromerida)? An experimental approach. Mar Biol 114:503–507

    Article  Google Scholar 

  • Schönberg CHL (2000) Bioeroding sponges common to the central Australian Great Barrier Reef: descriptions of three new species, two new records, and additions to two previously described species. Senckenbergiana Marit 30:161–221

    Article  Google Scholar 

  • Schönberg CHL (2001) Small-scale distribution of Australian bioeroding sponges in shallow water. Ophelia 55:39–54

    Article  Google Scholar 

  • Schönberg CHL (2002) Sponges of the ‘Cliona viridis complex’—a key for species identification. In: Moosa MK, Soemodihardjo S, Soegiarto A, Romimohtarto K, Nontji A, Soekarno, Suharsono (eds). Proceedings of the 9th international coral reef symposium, Bali, pp 295–300

  • Schönberg CHL (2003) Substrate effects on the bioeroding demosponge Cliona orientalis. 2. Substrate colonisation and tissue growth. Mar Ecol 24:59–74

    Article  Google Scholar 

  • Schönberg CHL (2006) Growth and erosion of the zooxanthellate Australian bioeroding sponge Cliona orientalis are enhanced in light. In: Suzuki Y, Nakamori T, Hidaka M, Kayanne H, Casareto BE, Nadaoka K, Yamano H, Tsuchiya M (eds). Proceedings of 10th international coral reef symposium, Okinawa, pp 168–174

  • Schönberg CHL (2008) A history of sponge erosion: from past myths and hypotheses to recent approaches. In: Wisshak M, Tapanila L (eds) Current developments in bioerosion. Springer, Berlin, pp 165–202

    Chapter  Google Scholar 

  • Schönberg CHL (2015) Self-cleaning surfaces in sponges. Mar Biodiv. 45:623–624

    Article  Google Scholar 

  • Schönberg CHL, Loh WKW (2005) Molecular identity of the unique symbiotic dinoflagellates found in the bioeroding demosponge Cliona orientalis. Mar Ecol Prog Ser 299:157–166

    Article  Google Scholar 

  • Schönberg CHL, Ortiz J-C (2009) Is sponge bioerosion increasing? In: Riegl BM, Dodge RE (eds). Proceedings of 11th international coral reef symposium, Fort Lauderdale, pp 520–523

  • Schönberg CHL, Suwa R (2007) Why bioeroding sponges may be better hosts for symbiotic dinoflagellates than many corals. In: Custódio MR, Lôbo-Hajdu G, Hajdu E, Muricy G (eds) Porifera research: biodiversity, innovation and sustainability. National Museum, Rio de Janeiro, pp 569–580

    Google Scholar 

  • Schönberg CHL, Wilkinson CR (2001) Induced colonization of corals by a clionid bioeroding sponge. Coral Reefs 20:69–76

    Article  Google Scholar 

  • Schönberg CHL, de Beer D, Lawton A (2005) Oxygen microsensor studies on zooxanthellate clionaid sponges from the Costa Brava, Mediterranean Sea. J Phycol 41:774–779

    Article  Google Scholar 

  • Schönberg CHL, Suwa R, Hidaka M, Loh WKW (2008) Sponge and coral zooxanthellae in heat and light: preliminary results of photochemical efficiency monitored with pulse amplitude modulated fluorometry. Mar Ecol 29:247–258

    Article  Google Scholar 

  • Steindler L, Beer S, Peretzman-Shemer A, Nyberg C, Ilan M (2001) Photoadaptation of zooxanthellae in the sponge Cliona vastifica from the Rea Sea, as measured in situ. Mar Biol 138:511–515

    Article  Google Scholar 

  • Ulstrup KE, Kühl M, Bourne DG (2007) Zooxanthellae harvested by ciliates associated with brown band syndrome of corals remain photosynthetically competent. Appl Environ Microb 73:1968–1975

    Article  CAS  Google Scholar 

  • Vacelet J (1982) Algal-sponge symbioses in the coral reefs of New Caledonia: a morphological study. In: Gomez ED, Birkeland CE, Buddemeier RW, Johannes RE, Marsh JA Jr, Tsuda RT (eds). Proceedings of 4th international coral reef symposium, Manila, pp 713–719

  • Van Soest RWM, Boury-Esnault N, Hooper JNA, Rützler K, de Voogd NJ, Alvarez de Glasby B, Hajdu E, Pisera AB, Manconi R, Schönberg CHL, Janussen D, Tabachnick KR, Klautau M, Picton B, Kelly M, Vacelet J, Dohrmann M, Díaz M-C, Cárdenas P (2015) World Porifera Database. http://www.marinespecies.org/porifera. Accessed 19 July 2015

  • Walz (2014) Imaging-PAM M-Series chlorophyll fluorometer: instrument description and information for users (2.152/07.06), 5th edn. Heinz Walz GmbH, Effeltrich

    Google Scholar 

  • Warner ME, Lesser MP, Ralph PJ (2011) Chlorophyll fluorescence in reef building corals. In: Suggett DJ, Prasil O, Borowitzka MA (eds) Chlorophyll a fluorescence in aquatic sciences: methods and applications, developments in applied phycology 4. Springer, Dordrecht, pp 209–222

    Google Scholar 

  • Weisz JB, Massaro AJ, Ramsby BD, Hill MS (2010) Zooxanthellar symbionts shape host sponge trophic status through translocation of carbon. Biol Bull 219:189–197

    Google Scholar 

  • Wisshak M, Schönberg CHL, Form A, Freiwald A (2012) Ocean acidification accelerates reef bioerosion. PLoS ONE 7:e45124

    Article  CAS  Google Scholar 

  • Wisshak M, Schönberg CHL, Form A, Freiwald A (2013) Effects of ocean acidification and global warming on reef bioerosion—lessons from a clionaid sponge. Aquat Biol 19:111–127

    Article  Google Scholar 

  • Wisshak M, Schönberg CHL, Form A, Freiwald A (2014) Sponge bioerosion accelerated by ocean acidification across species and latitudes? Helgoland Mar Res 68:253–263

    Article  Google Scholar 

  • Zundelevich A, Lazar B, Ilan M (2007) Chemical versus mechanical bioerosion of coral reefs by boring sponges—lessons from Pione cf. vastifica. J Exp Biol 210:91–96

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge Moreton Bay Research Station of The University of Queensland, and E. Lewis, N. Van Dyck, K. Townsend and W. K. W. Loh for their assistance in the field. We thank M. Carmi, D. Bender and G. Roff for their advice on the chlorophyll fluorescence assay, O2 flux assay and light curve fitting, respectively. We also thank the anonymous reviewers who provided valuable comments on this article. This study was funded by the Australian Research Council (ARC) Linkage Grant LP0775303 (SD and OHG) and the ARC Centre of Excellence Grant CE0561435 (SD and OHG). A permit from the Department of Environment and Resource Management, Australia (QS2010/MAN79) was provided to collect the sponge samples used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James K.H. Fang.

Additional information

Responsible Editor: F. Weinberger.

Reviewed by undisclosed experts.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, J.K., Schönberg, C.H., Hoegh-Guldberg, O. et al. Day–night ecophysiology of the photosymbiotic bioeroding sponge Cliona orientalis Thiele, 1900. Mar Biol 163, 100 (2016). https://doi.org/10.1007/s00227-016-2848-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00227-016-2848-4

Keywords

Navigation