Skip to main content

Advertisement

Log in

Evidence of seabird guano enrichment on a coral reef in Oahu, Hawaii

  • Original paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Seabirds and coral reefs are two of the most threatened marine communities on earth, and they co-occur on many tropical islands and subtropical islands and atolls. Seabirds concentrate marine-derived nutrients on breeding islands in the form of feces (guano), and these nutrients dramatically alter terrestrial ecosystem ecology. Recent work in the remote Pacific indicates seabird-derived nutrients may also subsidize nearshore coral reefs, but the consequences of guano on complex, anthropogenically modified coral reefs are unknown. The impact of seabird guano on nearshore coral reefs around Moku Nui, an islet with a large seabird colony in Oahu, Hawaii, was investigated in comparison with coral reefs around three islets with lower seabird abundance. Reefs in close proximity to Moku Nui (where thousands of wedge-tailed shearwaters, Puffinus pacificus, breed) had greater concentrations of dissolved phosphate in seawater and greater δ15N in adjacent subtidal macroalgae relative to reefs next to smaller breeding colonies. However, dissolved nitrate was not different among islets. These results indicate that seabirds may be a source of nutrients for the waters surrounding Moku Nui that are already inundated with local and global stressors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aeby GS, Williams GJ, Franklin EC et al (2011) Patterns of coral disease across the Hawaiian Archipelago: relating disease to environment. PLoS ONE 6:e20370. doi:10.1371/journal.pone.0020370

    Article  CAS  Google Scholar 

  • Amato D (2015) Ecophysiological responses of macroalgae to submarine groundwater discharge in Hawaii. Dissertation, University of Hawaii, Manoa

  • Anderson W, Polis G (1999) Nutrient fluxes from water to land: seabirds affect plant nutrient status on Gulf of California islands. Oecologia 118:324–332

    Article  Google Scholar 

  • Bailey-Brock J, Brock R, Kam A et al (2007) Anthropogenic disturbance on shallow cryptofaunal communities in a marine life conservation district on Oahu, Hawaii. Int Rev Hydrobiol 92:291–300. doi:10.1002/iroh.200610958

    Article  Google Scholar 

  • Bosman A, Hockey P (1986) Seabird guano as a determinant of rocky intertidal community structure. Mar Ecol Prog Ser 32:247–257. doi:10.3354/meps032247

    Article  Google Scholar 

  • Cardini U, Bednarz VN, Foster RA, Wild C (2014) Benthic N-2 fixation in coral reefs and the potential effects of human- induced environmental change. Ecol Evol 4:1706–1727. doi:10.1002/ece3.1050

    Article  Google Scholar 

  • Coles S, Swenson C (2010) Marine biota information base for offshore islets in the Main Hawaiian Islands. Bish Museum Tech Rep 50:1–145

    Google Scholar 

  • Costanzo SD, Udy J, Longstaff B, Jones A (2005) Using nitrogen stable isotope ratios (delta N-15) of macroalgae to determine the effectiveness of sewage upgrades: changes in the extent of sewage plumes over four years in Moreton Bay, Australia. Mar Pollut Bull 51:212–217. doi:10.1016/j.marpolbul.2004.10.018

    Article  CAS  Google Scholar 

  • Croll D, Maron J, Estes J et al (2005) Introduced predators transform subarctic islands from grassland to tundra. Science 307:1959–1961. doi:10.1126/science.1108485

    Article  CAS  Google Scholar 

  • Fabricius KE (2005) Effects of terrestrial runoff on the ecology of corals and coral reefs: review and synthesis. Mar Pollut Bull 50:125–146. doi:10.1016/j.marpolbul.2004.11.028

    Article  CAS  Google Scholar 

  • Fabricius KE, De’Ath G (2004) Identifying ecological change and its causes: a case study on coral reefs. Ecol Appl 14:1448–1465. doi:10.1890/03-5320

    Article  Google Scholar 

  • Friedlander AM, DeMartini EE (2002) Contrasts in density, size, and biomass of reef fishes between the northwestern and the main Hawaiian Islands: the effects of fishing down apex predators. Mar Ecol Prog Ser 230:253–264. doi:10.3354/meps230253

    Article  Google Scholar 

  • Hoegh-Guldberg O, Mumby PJ, Hooten AJ et al (2007) Coral reefs under rapid climate change and ocean acidification. Science 318:1737–1742. doi:10.1126/science.1152509

    Article  CAS  Google Scholar 

  • Hughes TP (1994) Catastrophes, phase-shifts, and large-scale degradation of a Caribbean coral-reef. Science 265:1547–1551. doi:10.1126/science.265.5178.1547

    Article  CAS  Google Scholar 

  • Hughes TP, Baird AH, Bellwood DR et al (2003) Climate change, human impacts, and the resilience of coral reefs. Science 301:929–933. doi:10.1126/science.1085046

    Article  CAS  Google Scholar 

  • Hunter CL, Evans CW (1995) Coral-reefs in Kaneohe Bay, Hawaii-2 centuries of western influence and 2 decades of data. Bull Mar Sci 57:501–515

    Google Scholar 

  • Jokiel PL, Hunter CL, Taguchi S, Watarai L (1993) Ecological impact of a fresh-water reef kill in Kaneohe Bay, Oahu, Hawaii. Coral Reefs 12:177–184. doi:10.1007/BF00334477

    Article  Google Scholar 

  • Kolb GS, Jerling L, Hamback PA (2010) The impact of cormorants on plant–arthropod food webs on their nesting islands. Ecosystems 13:353–366. doi:10.1007/s10021-010-9323-8

    Article  CAS  Google Scholar 

  • Lapointe BE, Clarke MW (1992) Nutrient inputs from the watershed and coastal eutrophication in the Florida Keys. Estuaries 15:465–476. doi:10.2307/1352391

    Article  CAS  Google Scholar 

  • Lindeboom HJ (1984) The nitrogen pathway in a penguin rookery. Ecology 65:269. doi:10.2307/1939479

    Article  CAS  Google Scholar 

  • Littler MM, Littler DS, Titlyanov EA (1991) Comparisons of N-limited and P-limited productivity between high granitic islands versus low carbonate atolls in the Seychelles archipelago—a test of the relative-dominance paradigm. Coral Reefs 10:199–209. doi:10.1007/BF00336775

    Article  Google Scholar 

  • McCauley DJ, Desalles PA, Young HS et al (2012) From wing to wing: the persistence of long ecological interaction chains in less-disturbed ecosystems. Nature 2:409. doi:10.1038/srep00409

    Google Scholar 

  • Mcclelland JW, Valiela I, Michener RH (1997) Nitrogen-stable isotope signatures in estuarine food webs: a record of increasing isotope signatures in coastal watersheds. Limnol Oceanogr 42:930–937

    Article  CAS  Google Scholar 

  • Nystrom M, Folke C, Moberg F (2000) Coral reef disturbance and resilience in a human-dominated environment. Trends Ecol Evol 15:413–417. doi:10.1016/S0169-5347(00)01948-0

    Article  Google Scholar 

  • Pandolfi JM, Bradbury RH, Sala E et al (2003) Global trajectories of the long-term decline of coral reef ecosystems. Science 301:955–958. doi:10.1126/science.1085706

    Article  CAS  Google Scholar 

  • Polis GA, Hurd SD (1995) Extraordinarily high spider densities on islands: flow of energy from the marine to terrestrial food webs and the absence of predation. Proc Natl Acad Sci USA 92:4382–4386

    Article  CAS  Google Scholar 

  • Polis G, Hurd S (1996) Linking marine and terrestrial food webs: allochthonous input from the ocean supports high secondary productivity on small islands and coastal land communities. Am Nat 147:396–423

    Article  Google Scholar 

  • Pyle R, Pyle P (2009) The birds of the Hawaiian Islands: occurrence, history, distribution, and status. In: BP Bish. Museum, Honolulu, HI, USA Version 1. http://hbs.bishopmuseum.org/birds/rlp-monograph. Accessed 15 April 2015

  • Schmidt S, Dennison WC, Moss GJ, Stewart GR (2004) Nitrogen ecophysiology of Heron Island, a subtropical coral cay of the Great Barrier Reef, Australia. Funct Plant Biol 31:517–528. doi:10.1071/FP04024

    Article  CAS  Google Scholar 

  • Smith S (1984) Phosphorus versus nitrogen limitation in the marine-environment. Limnol Oceanogr 29:1149–1160

    Article  CAS  Google Scholar 

  • Smith JS, Johnson CR (1995) Nutrient inputs from seabirds and humans on a populated coral cay. Mar Ecol Prog Ser 124:189–200

    Article  Google Scholar 

  • Smith SV, Kimmerer WJ, Laws EA et al (1981) Kaneohe Bay sewage diversion experiment: perspectives on ecosystem responses to nutritional perturbation. Pacific Sci 35:279–402

    CAS  Google Scholar 

  • Smith DG, Shiinoki EK, VanderWerf EA (2006) Recovery of native species following rat eradication on Mokoli’i Island, O’ahu, Hawai’i. Pac Sci 60:299–303. doi:10.1353/psc.2006.0012

    Article  Google Scholar 

  • Spatz DR, Newton KM, Heinz R et al (2014) The biogeography of globally threatened seabirds and island conservation opportunities. Conserv Biol 28:1282–1290. doi:10.1111/cobi.12279

    Article  Google Scholar 

  • Stimson J, Larned ST, Conklin E (2001) Effects of herbivory, nutrient levels, and introduced algae on the distribution and abundance of the invasive macroalga Dictyosphaeria cavernosa in Kaneohe Bay, Hawaii. Coral Reefs 19:343–357

    Article  Google Scholar 

  • Szpak P, Longstaffe FJ, Millaire JF, White CD (2012) Stable isotope biogeochemistry of seabird guano fertilization: results from growth chamber studies with maize (Zea Mays). PLoS ONE. doi:10.1371/journal.pone.0033741

    Google Scholar 

  • Timm OE, Giambelluca TW, Diaz HF (2015) Statistical downscaling of rainfall changes in Hawaii based on the CMIP5 global model projections. J Geophys Res 120:92–112. doi:10.1002/2014JD022059

    Article  Google Scholar 

  • Williams ID, Walsh WJ, Miyasaka A, Friedlander AM (2006) Effects of rotational closure on coral reef fishes in Waikiki-Diamond Head Fishery Management Area, Oahu, Hawaii. Mar Ecol Prog Ser 310:139–149. doi:10.3354/meps310139

    Article  Google Scholar 

  • Williams ID, Richards BL, Sandin SA et al (2011) Differences in reef fish assemblages between populated and remote reefs spanning multiple archipelagos across the central and western Pacific. J Mar Biol 2011:1–14. doi:10.1155/2011/826234

    Article  Google Scholar 

  • Wootton J (1991) Direct and indirect effects of nutrients on intertidal community structure: variable consequences of seabird guano. J Exp Mar Bio Ecol 151:139–153. doi:10.1016/0022-0981(91)90121-C

    Article  Google Scholar 

  • Young HS, McCauley DJ, Dunbar RB, Dirzo R (2010) Plants cause ecosystem nutrient depletion via the interruption of bird-derived spatial subsidies. Proc Natl Acad Sci USA 107:2072–2077. doi:10.1073/pnas.0914169107

    Article  CAS  Google Scholar 

  • Young LC, VanderWerf EA, Lohr MT et al (2013) Multi-species predator eradication within a predator-proof fence at Ka’ena Point, Hawai’i. Biol Invasions 15:2627–2638. doi:10.1007/s10530-013-0479-y

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to the faculty and staff at the Hawaii Institute of Marine Biology for assisting in the logistics of this work, particularly F. Thomas, R. Toonen, and J. Jones. We thank G. Marino for fieldwork assistance. We acknowledge B. Patel, K. Mattingly, R. Tallman, J. Bachellier, D. Pruitt, K. McElroy, K. Kopecky, B. Buttler, and J. Walden for laboratory assistance. We thank R. Brainard for suggesting the study site, assistance with experimental design, and editing the manuscript. We thank P. Raimondi, D. Croll, B. Tershy, J. Estes, and M. Beck for their assistance with experimental design, statistics, and editing of the manuscript. We thank M. Foley, R. Franks, and D. Andreasen for their assistance with seawater and stable isotope analyses. We thank A. Marie, L. Young, and the Hawaii Division of Forestry and Wildlife for information on seabird population ecology. Finally, we acknowledge the following funding sources: National Science Foundation Doctoral Dissertation Improvement Grant (#1110815), the Friends of Long Marine Lab Student Education and Research Award, Myers Trust, Center for Tropical Research in Ecology, Agriculture, and Development (CenTREAD) tropical research grant, and Ecology and Evolutionary Biology graduate research and travel grants from the University of California Santa Cruz. No permits were necessary in the collection of algae for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susanna E. Honig.

Additional information

Responsible Editor: V. Paiva.

Reviewed by F.C. Ceia and an undisclosed expert.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Honig, S.E., Mahoney, B. Evidence of seabird guano enrichment on a coral reef in Oahu, Hawaii. Mar Biol 163, 22 (2016). https://doi.org/10.1007/s00227-015-2808-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00227-015-2808-4

Keywords

Navigation