Skip to main content
Log in

Winter foraging site fidelity of king penguins breeding at the Falkland Islands

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Foraging site fidelity has profound consequences for individual fitness, population processes and the effectiveness of species conservation measures. Accordingly, quantifying site fidelity has become increasingly important in animal movement and habitat selection studies. To assess foraging site fidelity in king penguins (Aptenodytes patagonicus) breeding at the Falkland Islands (51.48°S, 57.83°W), we measured overlap in time spent in foraging areas (at a 0.1° × 0.1° grid resolution) between successive foraging trips and foraging route consistency during the crèche period. In total, 30 complete foraging trips from seven king penguins were recorded between April and October 2010. King penguins predominantly foraged on the highly productive Patagonian slope, to the north of the Falkland Islands [median foraging trip distance 213 km (SD = 215 km) and duration 12.8 days (SD = 14.7 days)]. Overlap in time spent in an area on consecutive foraging trips ranged between 2 and 73 % (mean 27 %, SD = 22 %). Bearing during the outbound portion of foraging trips was typically highly repeatable for individual birds, but foraging trip duration and distance were not. Travel during the outbound phase of foraging trips was consistent with the direction of the northward-flowing Falkland Current that may act as a directional cue or facilitate rapid transit to foraging areas. Flexibility in foraging trip distances and durations may be a response to changes in resource availability and changes in the energetic requirements of adults and chicks over an extended breeding cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Acha EM, Mianzan HW, Guerrero RA et al (2004) Marine fronts at the continental shelves of austral South America. J Mar Syst 44:83–105. doi:10.1016/j.jmarsys.2003.09.005

    Article  Google Scholar 

  • Arkhipkin AI, Middleton DAE, Sirota AM, Grzebielec R (2004) The effect of Falkland Current inflows on offshore ontogenetic migrations of the squid Loligo gahi on the southern shelf of the Falkland Islands. Estuar Coast Shelf Sci 60:11–22. doi:10.1016/j.ecss.2003.11.016

    Article  Google Scholar 

  • Arkhipkin AI, Brickle P, Laptikhovsky V, Winter A (2012) Dining hall at sea: feeding migrations of nektonic predators to the eastern Patagonian Shelf. J Fish Biol 81:882–902. doi:10.1111/j.1095-8649.2012.03359.x

    Article  CAS  Google Scholar 

  • Augé AA, Chilvers BL, Moore AB, Davis LS (2013) Importance of studying foraging site fidelity for spatial conservation measures in a mobile predator. Anim Conserv. doi:10.1111/acv.12056

    Google Scholar 

  • Baylis AMM, Page B, Goldsworthy SD (2008) Effect of seasonal changes in upwelling activity on the foraging locations of a wide-ranging central-place forager, the New Zealand fur seal. Can J Zool 86:774–789. doi:10.1139/Z08-055

    Article  Google Scholar 

  • Baylis AMM, Page B, McKenzie J, Goldsworthy SD (2011) Individual foraging site fidelity in lactating New Zealand fur seals: Continental shelf versus oceanic habitats. Mar Mamm Sci. doi:10.1111/j.1748-7692.2011.00487.x

    Google Scholar 

  • Beauplet G, Dubroca L, Guinet C et al (2004) Foraging ecology of subantarctic fur seals Arctocephalus tropicalis breeding on Amsterdam Island: seasonal changes in relation to maternal characteristics and pup growth. Mar Ecol Prog Ser 273:211–225. doi:10.3354/meps273211

    Article  Google Scholar 

  • Benhamou S (2004) How to reliably estimate the tortuosity of an animal’s path: straightness, sinuosity, or fractal dimension? J Theor Biol 229:209–220. doi:10.1016/j.jtbi.2004.03.016

    Article  Google Scholar 

  • Benoit-Bird K, Battaile B, Nordstrom C, Trites A (2013) Foraging behavior of northern fur seals closely matches the hierarchical patch scales of prey. Mar Ecol Prog Ser 479:283–302. doi:10.3354/meps10209

    Article  Google Scholar 

  • Bingman VP, Cheng K (2005) Mechanisms of animal global navigation: comparative perspectives and enduring challenges. Ethol Ecol Evol 17:295–318. doi:10.1080/08927014.2005.9522584

    Article  Google Scholar 

  • Bonadonna F, Lea M, Dehorter O, Guinet C (2001) Foraging ground fidelity and route-choice tactics of a marine predator: the Antarctic fur seal Arctocephalus gazella. Mar Ecol Prog Ser 223:287–297. doi:10.3354/meps223287

    Article  Google Scholar 

  • Bost C-A, Charrassin JB, Clerquin Y, Maho Y Le (2004) Exploitation of distant marginal ice zones by king penguins during winter. Mar Ecol Prog Ser 283:293–297

  • Bost CA, Delord K, Barbraud C et al (2013) King Penguin. In: García Borboroglu PG, Boersma PD (eds) Penguins—Natural History and Conservation. University of Washington Press, Seattle U.S.A, pp 7–21

    Google Scholar 

  • Bradshaw C, Hindell M, Sumner M, Michael K (2004) Loyalty pays: potential life history consequences of fidelity to marine foraging regions by southern elephant seals. Anim Behav 68:1349–1360. doi:10.1016/j.anbehav.2003.12.013

    Article  Google Scholar 

  • Call K, Ream R, Johnson D et al (2008) Foraging route tactics and site fidelity of adult female northern fur seal (Callorhinus ursinus) around the Pribilof Islands. Deep Sea Res Part II Top Stud Oceanogr 55:1883–1896. doi:10.1016/j.dsr2.2008.04.022

    Article  Google Scholar 

  • Charnov EL (1976) Optimal foraging, the marginal value theorem. Theor Popul Biol 9:129–136

    Article  CAS  Google Scholar 

  • Charrassin J, Bost C-A (2001) Utilisation of the oceanic habitat by king penguins over the annual cycle. Mar Ecol Prog Ser 221:285–298. doi:10.3354/meps221285

    Article  Google Scholar 

  • Charrassin J-B, Bost C-A, Pütz K et al (1998) Foraging strategies of incubating and brooding king penguins Aptenodytes patagonicus. Oecologia 114:194–201. doi:10.1007/s004420050436

    Article  Google Scholar 

  • Cherel Y, Pütz K, Hobson K (2002) Summer diet of king penguins (Aptenodytes patagonicus) at the Falkland Islands, southern Atlantic Ocean. Polar Biol 25:898–906. doi:10.1007/s00300-002-0419-2

    Google Scholar 

  • Chilvers BL (2008) Foraging site fidelity of lactating New Zealand sea lions. J Zool 276:28–36. doi:10.1111/j.1469-7998.2008.00463.x

    Article  Google Scholar 

  • Costa DP, Robinson PW, Arnould JPY et al (2010) Accuracy of ARGOS locations of Pinnipeds at-sea estimated using Fastloc GPS. PLoS One 5:e8677. doi:10.1371/journal.pone.0008677

    Article  Google Scholar 

  • Cotté C, Park Y, Guinet C, Bost C (2007) Movements of foraging king penguins through marine mesoscale eddies. Proc R Soc B Biol Sci 274:2385–2391. doi:10.1098/rspb.2007.0775

    Article  Google Scholar 

  • Dingle H, Drake VA (2007) What is migration? Bioscience 57:113. doi:10.1641/B570206

    Article  Google Scholar 

  • Fagan WF, Lewis MA, Auger-Méthé M et al (2013) Spatial memory and animal movement. Ecol Lett. doi:10.1111/ele.12165

    Google Scholar 

  • Franco BC, Piola AR, Rivas AL et al (2008) Multiple thermal fronts near the Patagonian shelf break. Geophys Res Lett 35:L02607. doi:10.1029/2007GL032066

    Article  Google Scholar 

  • Gagliardo A, Bried J, Lambardi P et al (2013) Oceanic navigation in Cory’s shearwaters: evidence for a crucial role of olfactory cues for homing after displacement. J Exp Biol 216:2798–2805. doi:10.1242/jeb.085738

    Article  Google Scholar 

  • Hamer K, Phillips R, Hill J et al (2001) Contrasting foraging strategies of gannets Morus bassanus at two North Atlantic colonies: foraging trip duration and foraging area fidelity. Mar Ecol Prog Ser 224:283–290. doi:10.3354/meps224283

    Article  Google Scholar 

  • Harris S, Raya Rey A, Zavalaga C, Quintana F (2014) Strong temporal consistency in the individual foraging behaviour of Imperial Shags Phalacrocorax atriceps. Ibis 156:523–533. doi:10.1111/ibi.12159   

  • Hedd A, Gales R, Brothers N (2001) Foraging strategies of shy albatross Thalassarche cauta breeding at Albatross Island, Tasmania, Australia. Mar Ecol Prog Ser 224:267–282. doi:10.3354/meps224267

    Article  Google Scholar 

  • Hillen J, Kiefer A, Veith M (2009) Foraging site fidelity shapes the spatial organisation of a population of female western barbastelle bats. Biol Conserv 142:817–823. doi:10.1016/j.biocon.2008.12.017

    Article  Google Scholar 

  • Hurly AT (2003) The twin threshold model: risk-intermediate foraging by rufous hummingbirds, Selasphorus rufus. Anim Behav 66:751–761. doi:10.1006/anbe.2003.2278

    Article  Google Scholar 

  • Irons DB (1998) Foraging area fidelity of individual seabirds in relation to tidal cycles and flock feeding. Ecology 79:647. doi:10.2307/176960

    Article  Google Scholar 

  • Johnson D, London J, Lea M, Durban J (2008) Continuous-time correlated random walk model for animal telemetry data. Ecology 89:1208–1215

    Article  Google Scholar 

  • Jouventin P, Capdeville D, Cuenot-chaillet F, Boiteau C (1993) Exploitation of pelagic resources by a non-flying seabird: satellite tracking of the king penguin throughout the breeding cycle. Mar Ecol Prog Ser 106:11–19

    Article  Google Scholar 

  • Le Bohec C, Gauthier-Clerc M, Grémillet D et al (2007) Population dynamics in a long-lived seabird: i. Impact of breeding activity on survival and breeding probability in unbanded king penguins. J Anim Ecol 76:1149–1160. doi:10.1111/j.1365-2656.2007.01268.x

    Article  Google Scholar 

  • Lessells CM, Boag PT (1987) Unrepeatable repeatabilities: a common mistake. Auk 104:116–121

    Article  Google Scholar 

  • Matthiopoulos J (2003) The use of space by animals as a function of accessibility and preference. Ecol Modell 159:239–268. doi:10.1016/S0304-3800(02)00293-4

    Article  Google Scholar 

  • Monsarrat S, Benhamou S, Sarrazin F et al (2013) How predictability of feeding patches affects home range and foraging habitat selection in avian social scavengers? PLoS One 8:e53077. doi:10.1371/journal.pone.0053077

    Article  CAS  Google Scholar 

  • Montevecchi W, Benvenuti S, Garthe S et al (2009) Flexible foraging tactics by a large opportunistic seabird preying on forage- and large pelagic fishes. Mar Ecol Prog Ser 385:295–306. doi:10.3354/meps08006

    Article  Google Scholar 

  • Moore GJ, Wienecke B, Robertson G (1999) Seasonal change in foraging areas and dive depths of breeding king penguins at Heard Island. Polar Biol 21:376–384. doi:10.1007/s003000050376

    Article  Google Scholar 

  • Mori Y, Boyd I (2004) The behavioral basis for nonlinear functional responses and optimal foraging in Antarctic fur seals. Ecology 85:398–410

    Article  Google Scholar 

  • Nakagawa S, Schielzeth H (2010) Repeatability for Gaussian and non-Gaussian data: a practical guide for biologists. Biol Rev Camb Philos Soc 85:935–956. doi:10.1111/j.1469-185X.2010.00141.x

    Google Scholar 

  • Nevitt G, Reid K, Trathan P (2004) Testing olfactory foraging strategies in an Antarctic seabird assemblage. J Exp Biol 207:3537–3544. doi:10.1242/jeb.01198

    Article  Google Scholar 

  • Nordstrom CA, Battaile BC, Cotte C, Trites AW (2013) Foraging habitats of lactating northern fur seals are structured by thermocline depths and submesoscale fronts in the eastern Bering Sea. Deep Sea Res Part II Top Stud Oceanogr 88:78–96. doi:10.1016/j.dsr2.2012.07.010

  • Orsi, A. and Ryan, U. (2001) Locations of the various fronts in the southern ocean, Australian Antarctic Data Centre–CAASM Metadata (updated 2006)

  • Otley H, Clausen AP, Christie D et al (2007) Breeding patterns of king penguins on the Falkland Islands. Emu 107:156. doi:10.1071/MU06027

    Article  Google Scholar 

  • Patrick SC, Bearhop S, Grémillet D et al (2014) Individual differences in searching behaviour and spatial foraging consistency in a central place marine predator. Oikos 123:33–40. doi:10.1111/j.1600-0706.2013.00406.x

    Article  Google Scholar 

  • Péron C, Weimerskirch H, Bost C-A (2012) Projected poleward shift of king penguins’ (Aptenodytes patagonicus) foraging range at the Crozet Islands, southern Indian Ocean. Proc Biol Sci 279:2515–2523. doi:10.1098/rspb.2011.2705

    Article  Google Scholar 

  • Peterson RG (1992) The boundary currents in the western Argentine Basin. Deep Sea Res Part A 39(3–4):623–644

  • Peterson RG, Whitworth III T (1989) The subantarctic and polar fronts in relation to deep water masses through the southwestern Atlantic. J Geophys Res 94:10817–10838. doi:10.1029/JC094iC08p10817

  • Phillips R, Silk J, Croxall JP et al (2004) Accuracy of geolocation estimates for flying seabirds. Mar Ecol Prog Ser 266:265–272. doi:10.3354/meps266265

    Article  Google Scholar 

  • Piper WH (2011) Making habitat selection more “familiar”: a review. Behav Ecol Sociobiol 65:1329–1351. doi:10.1007/s00265-011-1195-1

    Article  Google Scholar 

  • Pistorius PA, Baylis AMM, Crofts S, Pütz K (2012) Population development and historical occurrence of king penguins at the Falkland Islands. Antarct Sci 24:435–440. doi:10.1017/S0954102012000302

    Article  Google Scholar 

  • Pütz K (2002) Spatial and temporal variability in the foraging areas of breeding king penguins. Condor 104:528–538.

    Article  Google Scholar 

  • Pütz K, Cherel Y (2005) The diving behaviour of brooding king penguins (Aptenodytes patagonicus) from the Falkland Islands: variation in dive profiles and synchronous underwater swimming provide new insights into their foraging strategies. Mar Biol 147:281–290. doi:10.1007/s00227-005-1577-x

    Article  Google Scholar 

  • Pütz K, Ingham RJ, Smith JG (2002) Foraging movements of Magellanic penguins Spheniscus magellanicus during the breeding season in the Falkland Islands. Aquat Conserv Mar Freshw Ecosyst 12:75–87

    Article  Google Scholar 

  • Pütz K, Smith JG, Ingham RJ, Luthi BH (2003) Satellite tracking of male rockhopper penguins Eudyptes chrysocome during the incubation period at the Falkland Islands. J Avian Biol 2:139–144

    Article  Google Scholar 

  • Ratcliffe N, Crofts S, Brown R et al (2014) Love thy neighbour or opposites attract? Patterns of spatial segregation and association among crested penguin populations during winter. J Biogeogr. doi:10.1111/jbi.12279

    Google Scholar 

  • Regular PM, Hedd A, Montevecchi WA (2013) Must marine predators always follow scaling laws? Memory guides the foraging decisions of a pursuit-diving seabird. Anim Behav 86:545–552. doi:10.1016/j.anbehav.2013.06.008

    Article  Google Scholar 

  • Rivas AL, Dogliotti AI, Gagliardini DA (2006) Seasonal variability in satellite-measured surface chlorophyll in the Patagonian Shelf. Cont Shelf Res 26:703–720. doi:10.1016/j.csr.2006.01.013

    Article  Google Scholar 

  • Roberts JJ, Best BD, Dunn DC et al (2010) Marine geospatial ecology tools: an integrated framework for ecological geoprocessing with ArcGIS, Python, R, MATLAB, and C++. Environ Model Softw 25:1197–1207. doi:10.1016/j.envsoft.2010.03.029

    Article  Google Scholar 

  • Robinson PW, Costa DP, Crocker DE et al (2012) Foraging behavior and success of a mesopelagic predator in the northeast Pacific Ocean: insights from a data-rich species, the northern elephant seal. PLoS One 7:e36728. doi:10.1371/journal.pone.0036728

    Article  CAS  Google Scholar 

  • Ronconi R, Burger A (2008) Limited foraging flexibility: increased foraging effort by a marine predator does not buffer against scarce prey. Mar Ecol Prog Ser 366:245–258. doi:10.3354/meps07529

    Article  Google Scholar 

  • Rounsevell DE, Copson GR (1982) Growth rate and recovery of a king penguin, Aptenodytes patagonicus, population after exploitation. Wildl Res 9(3):519–525. doi:10.1071/WR9820519

    Article  Google Scholar 

  • Stephens DW, Krebs JR (1986) Foraging theory. Princeton University Press, Princeton

    Google Scholar 

  • Sumner M (2010) trip:Spatial analysis of animal track data. R package version 1.1-6. http://CRAN.R-project.org/package=trip

  • R Core Team (2013) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/

  • Trathan PN, Bishop C, Maclean G et al (2008) Linear tracks and restricted temperature ranges characterise penguin foraging pathways. Mar Ecol Prog Ser 370:285–294. doi:10.3354/meps07638

    Article  Google Scholar 

  • Vaillant M, Bohec C, Prud’Homme O et al (2013) How age and sex drive the foraging behaviour in the king penguin. Mar Biol 160:1147–1156. doi:10.1007/s00227-013-2167-y

    Article  Google Scholar 

  • van Beest FM, Vander Wal E, Stronen AV et al (2013) Temporal variation in site fidelity: scale-dependent effects of forage abundance and predation risk in a non-migratory large herbivore. Oecologia 173:409–420. doi:10.1007/s00442-013-2647-2

    Article  Google Scholar 

  • Villegas-Amtmann S, Atkinson S, Paras-Garcia A, Costa DP (2012) Seasonal variation in blood and muscle oxygen stores attributed to diving behavior, environmental temperature and pregnancy in a marine predator, the California sea lion. Comp Biochem Physiol A Mol Integr Physiol 162:413–420. doi:10.1016/j.cbpa.2012.04.019

    Article  CAS  Google Scholar 

  • Wakefield ED, Phillips RA, Trathan PN, Arata J, Gales R, Huin N, Robertson G, Waugh SM, Weimerskirch H, Matthiopoulos J (2011) Habitat preference, accessibility, and competition limit the global distribution of breeding Black-browed Albatrosses. Ecol Monogr 81:141–167. doi:10.1890/09-0763.1

  • Wakefield ED, Bodey TW, Bearhop S, et al (2013) Space Partitioning Without Territoriality in Gannets. Science (80-). doi: 10.1126/science.1236077

  • Watanuki Y, Takahashi A, Sato K (2003) Feeding area specialization of chick-rearing Adélie Penguins Pygoscelis adeliae in a fast sea-ice area. Ibis (Lond 1859) 145:558–564. doi:10.1046/j.1474-919X.2003.00165.x

    Article  Google Scholar 

  • Weimerskirch H (2007) Are seabirds foraging for unpredictable resources? Deep Sea Res Part II Top Stud Oceanogr 54:211–223. doi:10.1016/j.dsr2.2006.11.013

    Article  Google Scholar 

  • Weimerskirch H, Pinaud D, Pawlowski F, Bost C-A (2007) Does prey capture induce area-restricted search? A fine-scale study using GPS in a marine predator, the wandering albatross. Am Nat 170:734–743. doi:10.1086/522059

    Article  Google Scholar 

  • Wilson RP, Kreye JM, Lucke K, Urquhart H (2004) Antennae on transmitters on penguins: balancing energy budgets on the high wire. J Exp Biol 207:2649–2662. doi:10.1242/jeb.01067

    Article  Google Scholar 

  • Womble J, Sigler M (2006) Seasonal availability of abundant, energy-rich prey influences the abundance and diet of a marine predator, the Steller sea lion Eumetopias jubatus. Mar Ecol Prog Ser 325:281–293. doi:10.3354/meps325281

    Article  Google Scholar 

  • Wood SN (2006) Generalized additive models: an introduction with R. Chapman Hall/CRC, Boca Raton, FL

  • Zuur AF, Ieno EN, Elphick CS (2010) A protocol for data exploration to avoid common statistical problems. Methods Ecol Evol 1:3–14. doi:10.1111/j.2041-210X.2009.00001.x

    Article  Google Scholar 

Download references

Acknowledgments

Research was undertaken with support from the World Wildlife Fund. We thank C. Dockrill for securing funding, S. Adlard, S. Crofts and M. Reeves for assisting with field work and J. Cheek for granting access to Volunteer Point. We are grateful to three anonymous reviewers that improved earlier drafts of the manuscript. Research was conducted under the Falkland Islands Government research permit R18/2011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alastair M. M. Baylis.

Additional information

Communicated by S. Garthe.

Appendix

Appendix

See Table 4.

Table 4 Published data on king penguin foraging trip distances and durations over autumn and winter

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baylis, A.M.M., Orben, R.A., Pistorius, P. et al. Winter foraging site fidelity of king penguins breeding at the Falkland Islands. Mar Biol 162, 99–110 (2015). https://doi.org/10.1007/s00227-014-2561-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-014-2561-0

Keywords

Navigation