Skip to main content

Advertisement

Log in

Spatio-temporal variability of polychaete colonization at volcanic CO2 vents indicates high tolerance to ocean acidification

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Ocean acidification is predicted to have negative effects on marine biota, resulting in the loss of biodiversity and changes in marine ecosystem structure and function. However, some species and life stages may be capable of thriving in low pH conditions, either due to their natural ability to tolerate stressful low pH–high pCO2 conditions and/or alteration of species interactions caused by changes in pH profiles, or due to evolutionary trade-offs. A better understanding of which species may be capable of tolerating ocean acidification can guide future research into the mechanisms for physiological and ecological resilience to future carbon dioxide (CO2) conditions. We investigated the colonization of selected polychaete species along a pH gradient originating from shallow, coastal volcanic CO2 vents (Ischia, Italy). Colonization was quantified by exposing artificial invertebrate collectors attached to the substratum for 30 days during different periods of the year (late spring, fall and late winter). Three species, Amphiglena mediterranea, Platynereis dumerilii and Syllis prolifera, were present and abundant along the gradient throughout the year. All three species were significantly more abundant in the most acidified areas, confirming their high tolerance and capacity to cope with very low pH. Abundances of all three species were compared to data previously collected via collectors suspended in the water column. More individuals were found in the collectors attached to the substratum, suggesting that abundances may have previously been underestimated. This is likely due to the close proximity of these collectors with the natural rocky substratum. All three species exhibited similar temporal variability, consistent with their life cycle and reproductive biology. Our results demonstrate high tolerance of the species for low and variable pH and corroborate their use as robust models to explore the capacity to cope with low pH–high pCO2 conditions, both in the natural vent systems and in the laboratory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Baggini C, Salomidi M, Voutsinas E, Bray L, Krasakopoulou E, Hall-Spencer JM (2014) Seasonality affects macroalgal community response to increases in pCO2. PLoS ONE 9(9):e106520

    Article  Google Scholar 

  • Bellan G (1980) Relationship of pollution to rocky substratum polychaetes on the French Mediterranean coast. Mar Pollut Bull 11:318–321. doi:10.1016/0025-326X(80)90048-X

    Article  Google Scholar 

  • Bellan G, Desrosiers G, Willsie A (1988) Use of an annelid pollution index for monitoring a moderately polluted littoral zone. Mar Pollut Bull 19:662–665. doi:10.1016/0025-326X(88)90385-2

    Article  CAS  Google Scholar 

  • Boudouresque C, Cinelli F (1971) Le peuplement des biotopes sciaphiles superficiels de mode battu de l’île d’Ischia (Golfe de Naples, Italie). Pubbl St Zool Napoli 39:1–43

  • Caldeira K, Wickett ME (2003) Anthropogenic carbon and ocean pH. Nature 425:365

    Article  CAS  Google Scholar 

  • Calosi P, Rastrick SPS, Graziano M et al (2013a) Distribution of sea urchins living near shallow water CO2 vents is dependent upon species acid-base and ion-regulatory abilities. Mar Pollut Bull 73:470–484. doi:10.1016/j.marpolbul.2012.11.040

    Article  CAS  Google Scholar 

  • Calosi P, Rastrick SPS, Lombardi C et al (2013b) Adaptation and acclimatization to ocean acidification in marine ectotherms: an in situ transplant experiment with polychaetes at a shallow CO2 vent system. Philos Trans R Soc Lond B Biol Sci 368:20120444. doi:10.1098/rstb.2012.0444

    Article  Google Scholar 

  • Chan VBS, Li C, Lane AC et al (2012) CO2-driven ocean acidification alters and weakens integrity of the calcareous tubes produced by the serpulid tubeworm, Hydroides elegans. PLoS ONE 7:e42718. doi:10.1371/journal.pone.0042718

    Article  CAS  Google Scholar 

  • Christen N, Calosi P, McNeill CL, Widdicombe S (2013) Structural and functional vulnerability to elevated pCO2 in marine benthic communities. Mar Biol 160:2113–2128

  • Cigliano M, Gambi MC, Rodolfo-Metalpa R et al (2010) Effects of ocean acidification on invertebrate settlement at volcanic CO2 vents. Mar Biol 157:2489–2502. doi:10.1007/s00227-010-1513-6

    Article  Google Scholar 

  • de Alteriis G, Insinga DD, Morabito S et al (2010) Age of submarine debris avalanches and tephrostratigraphy offshore Ischia Island, Tyrrhenian Sea, Italy. Mar Geol 278:1–18. doi:10.1016/j.margeo.2010.08.004

    Article  Google Scholar 

  • Dean HK (2008) The use of polychaetes (Annelida) as indicator species of marine pollution: a review. Rev Biol Trop 56:11–38

    Google Scholar 

  • Doney SC, Ruckelshaus M, Duffy JE et al (2012) Climate change impacts on marine ecosystems. Ann Rev Mar Sci 4:11–37. doi:10.1146/annurev-marine-041911-111611

    Article  Google Scholar 

  • Dupont S, Thorndyke MC (2009) Impact of CO2-driven ocean acidification on invertebrates early life-history—What we know, what we need to know and what we can do. Biogeosci Discuss 6:3109–3131

    Article  Google Scholar 

  • Fabricius KE, Langdon C, Uthicke S et al (2011) Losers and winners in coral reefs acclimatized to elevated carbon dioxide concentrations. Nat Clim Chang 1:165–169. doi:10.1038/nclimate1122

    Article  CAS  Google Scholar 

  • Fabricius KE, De’ath G, Noonan S, Uthicke S (2014) Ecological effects of ocean acidification and habitat complexity on reef-associated macroinvertebrate communities. Proc R Soc B. doi:10.1098/rspb.2013.2479

    Google Scholar 

  • Fabry VJ, Seibel BA, Feely RA, Orr JC (2008) Impacts of ocean acidification on marine fauna and ecosystem processes. ICES J Mar Sci 65:414–432

    Article  CAS  Google Scholar 

  • Fauchald K, Jumars PA (1979) The diet of worms: a study of polychaete feeding guilds. Oceanogr Mar Biol Annu Rev 17:193–284

    Google Scholar 

  • Feely RA, Sabine CL, Lee K et al (2004) Impact of anthropogenic CO2 on the CaCO3 system in the oceans. Science 305:362–367

    Article  CAS  Google Scholar 

  • Feely RA, Doney SC, Cooley SR (2009) Ocean acidification: present conditions and future changes in a high-CO2 world. Oceanography 22:36–47

    Article  Google Scholar 

  • Fischer A, Dorresteijn A (2004) The polychaete Platynereis dumerilii (Annelida): a laboratory animal with spiralian cleavage, lifelong segment proliferation and a mixed benthic/pelagic life cycle. BioEssays 26:314–325. doi:10.1002/bies.10409

    Article  Google Scholar 

  • Franke H (1986) Sex ratio and sex change in wild and laboratory populations of Typosyllis prolifera (Polychaeta). Mar Biol 90:198–208

    Article  Google Scholar 

  • Franke H (1999) Reproduction of the Syllidae (Annelida: Polychaeta). Hydrobiologia 402:39–55

    Article  Google Scholar 

  • Fraschetti S, Giangrande A, Terlizzi A, Boero F (2003) Pre- and post-settlement events in benthic community dynamics Les événements de pré- et post-installation larvaire dans la dynamique des communautés benthiques. Oceanol Acta 25:285–295

    Article  Google Scholar 

  • Fresi E, Colognola R, Gambi MC et al (1983) Ricerche sui popolamenti bentonici di substrato duro del Porto di Ischia. Infralitorale fotofilo: Policheti. Cah Biol Mar 24:1–19

    Google Scholar 

  • Frieder CA (2013) Evaluating low oxygen and pH variation and its effects on invertebrate early life stages on upwelling margins. Dissertation, University of California, San Diego, p 182

  • Gambi MC, Ricevuto E (2012) “Messages in the bubbles”. Il Geosito marino del Castello Aragonese di Ischia (Napoli): relazioni tra geologia e biologia in rapporto al cambiamento climatico. In: D’Angelo S, Fiorentino A (eds) Contributi al meeting Marino, Atti ISPRA, Roma, pp 89–96

  • Gambi M, Zupo V, Buia M, Mazzella L (2000) Feeding ecology of the polychaete Platynereis dumerilii (Audouin & Milne Edwards) (Nereididae) in the seagrass Posidonia oceanica system: role of the epiphytic flora. Ophelia 53(3):189–202

    Article  Google Scholar 

  • Gambi M, Dappiano M, Lanera P, Iacono B (2003) Biodiversità e bionomia dei popolamenti bentonici dei fondi duri delle isole Flegree: analisi di diverse metodologie di studio. In: Gambi M, De Lauro M, Iannuzzi F (eds) Acc Sc Lett Arti. Mem Soc Sc, Napoli, pp 133–162

    Google Scholar 

  • Giangrande A (1988) Polychaete zonation and its relation to algal distribution down a vertical cliff in the western Mediterranean (Italy): a structural analysis. J Exp Mar Biol Ecol 120:263–276. doi:10.1016/0022-0981(88)90006-8

    Article  Google Scholar 

  • Giangrande A (1989) Cicli vitali dei policheti e relazioni con l’ambiente. Oebalia XV:157–167

    Google Scholar 

  • Giangrande A, Fraschetti S, Terlizzi A (2002) Local recruitment differences in Platynereis dumerilii (Polychaeta, Nereididae) and their consequences for population structure. Ital J Zool 69:133–139

    Article  Google Scholar 

  • Giangrande A, Delos A, Fraschetti S et al (2003) Polychaete assemblages of rocky-shores along the South Adriatic coast (Mediterranean Sea): pattern of spatial distribution. Mar Biol 143:1109–1116

    Article  Google Scholar 

  • Giangrande A, Licciano M, Musco L (2005) Polychaetes as environmental indicators revisited. Mar Pollut Bull 50:1153–1162. doi:10.1016/j.marpolbul.2005.08.003

    Article  CAS  Google Scholar 

  • Godbold JA, Solan M (2013) Long-term effects of warming and ocean acidification are modified by seasonal variation in species responses and environmental conditions. Philos Trans R Soc Lond B Biol Sci 368:20130186. http://dx.doi.org/10.1098/rstb.2013.0186

  • Guadayol O, Silbiger NJ, Donahue MJ, Thomas FIM (2014) Patterns in temporal variability of temperature, oxygen and pH along an environmental gradient in a coral reef. PLoS ONE 9:e85213. doi:10.1371/journal.pone.0085213

    Article  Google Scholar 

  • Günther C-P (1992) Dispersal of intertidal invertebrates: A strategy to react to disturbance of different scales? Neth J Sea Res 30:45–56. doi:10.1016/0077-7579(92)90044-F

    Article  Google Scholar 

  • Hagerman GM, Rieger RM (1981) Dispersal of benthic meiofauna by wave and current action in Bogue Sound, North Carolina, USA. Mar Ecol 2:245–270. doi:10.1111/j.1439-0485.1981.tb00099.x

    Article  Google Scholar 

  • Hale R, Calosi P, McNeill L, Mieszkowska N, Widdicombe S (2011) Predicted levels of future ocean acidification and temperature rise could alter community structure and biodiversity in marine benthic communities. Oikos 120:661–674. doi:10.1111/j.1600-0706.2010.19469.x

    Article  Google Scholar 

  • Hall-Spencer JM, Rodolfo-Metalpa R, Martin S et al (2008) Volcanic carbon dioxide vents show ecosystem effects of ocean acidification. Nature 454:96–99. doi:10.1038/nature07051

    Article  CAS  Google Scholar 

  • Highsmith RC (1985) Floating and algal rafting as potential dispersal mechanisms in brooding invertebrates. Mar Ecol Prog Ser 25:169–179

    Article  Google Scholar 

  • Johnson VR, Brownlee C, Rickaby REM et al (2011) Responses of marine benthic microalgae to elevated CO2. Mar Biol 160:1813–1824. doi:10.1007/s00227-011-1840-2

    Article  Google Scholar 

  • Johnson VR, Russell BD, Fabricius KE et al (2012) Temperate and tropical brown macroalgae thrive, despite decalcification, along natural CO2 gradients. Glob Chang Biol 18:2792–2803. doi:10.1111/j.1365-2486.2012.02716.x

    Article  Google Scholar 

  • Jumars PA, Dorgan KM, Lindsay SM (2014) Diet of worms emended: an update of polychaete feeding guilds appendix a family-by-family review. Ann Rev Mar Sci. doi:10.1146/annurev-marine-010814-020007

    Google Scholar 

  • Kroeker KJ, Kordas RL, Crim RN, Singh GG (2010) Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms. Ecol Lett 13:1419–1434. doi:10.1111/j.1461-0248.2010.01518.x

    Article  Google Scholar 

  • Kroeker KJ, Micheli F, Gambi MC, Martz TR (2011) Divergent ecosystem responses within a benthic marine community to ocean acidification. Proc Natl Acad Sci USA 108:14515–14520. doi:10.1073/pnas.1107789108

    Article  CAS  Google Scholar 

  • Kroeker KJ, Gambi MC, Micheli F (2013a) Community dynamics and ecosystem simplification in a high-CO2 ocean. Proc Natl Acad Sci USA 110:12721–12726. doi:10.1073/pnas.1216464110

    Article  CAS  Google Scholar 

  • Kroeker KJ, Kordas RL, Crim R et al (2013b) Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming. Glob Chang Biol 19:1884–1896. doi:10.1111/gcb.12179

    Article  Google Scholar 

  • Kroeker KJ, Micheli F, Gambi MC (2013c) Ocean acidification causes ecosystem shifts via altered competitive interactions. Nat Clim Chang 3:156–159. doi:10.1038/nclimate1680

    Article  CAS  Google Scholar 

  • Landres PB, Morgan P (1999) Overview of the use of natural variability concepts in managing ecological systems. Ecol Appl 9:1179–1188

    Google Scholar 

  • Lewis C, Clemow K, Holt WV (2013) Metal contamination increases the sensitivity of larvae but not gametes to ocean acidification in the polychaete Pomatoceros lamarckii (Quatrefages). Mar Biol 160:2089–2101. doi:10.1007/s00227-012-2081-8

    Article  CAS  Google Scholar 

  • Lombardi C, Gambi MC, Vasapollo C et al (2011) Skeletal alterations and polymorphism in a Mediterranean bryozoan at natural CO2 vents. Zoomorphology 130:135–145. doi:10.1007/s00435-011-0127-y

    Article  Google Scholar 

  • Maas AE, Wishner KF, Seibel BA (2012) The metabolic response of pteropods to acidification reflects natural CO2-exposure in oxygen minimum zones. Biogeosciences 9:747–757. doi:10.5194/bg-9-747-2012

    Article  CAS  Google Scholar 

  • Munday PL, Warner RR, Monro K et al (2013) Predicting evolutionary responses to climate change in the sea. Ecol Lett 16:1488–1500. doi:10.1111/ele.12185

    Article  Google Scholar 

  • Musco L, Terlizzi A, Licciano M, Giangrande A (2009) Taxonomic structure and the effectiveness of surrogates in environmental monitoring: a lesson from polychaetes. Mar Ecol Prog Ser 383:199–210. doi:10.3354/meps07989

    Article  Google Scholar 

  • Neave MJ, Glasby CJ, McGuinness KA et al (2013) The diversity and abundance of polychaetes (Annelida) are altered in sediments impacted by alumina refinery discharge in the Northern Territory, Australia. Mar Environ Res 92:253–263. doi:10.1016/j.marenvres.2013.10.005

    Article  CAS  Google Scholar 

  • Olsgard F, Brattegard T, Holthe T (2003) Polychaetes as surrogates for marine biodiversity: lower taxonomic resolution and indicator groups. Biodivers Conserv 12:1033–1049. doi:10.1023/A:1022800405253

    Article  Google Scholar 

  • Pespeni MH, Sanford E, Gaylord B et al (2013) Evolutionary change during experimental ocean acidification. Proc Natl Acad Sci USA 110:6937–6942. doi:10.1073/pnas.1220673110

    Article  CAS  Google Scholar 

  • Pocklington P, Wells PG (1992) Polychaetes key taxa for marine environmental quality monitoring. Mar Pollut Bull 24:593–598

    Article  CAS  Google Scholar 

  • Pörtner H (2008) Ecosystem effects of ocean acidification in times of ocean warming: a physiologist’s view. Mar Ecol Prog Ser 373:203–217. doi:10.3354/meps07768

    Article  Google Scholar 

  • Porzio L, Buia MC, Hall-Spencer JM (2011) Effects of ocean acidification on macroalgal communities. J Exp Mar Bio Ecol 400:278–287. doi:10.1016/j.jembe.2011.02.011

    Article  CAS  Google Scholar 

  • Ricevuto E, Lorenti M, Patti FP et al (2012) Temporal trends of benthic invertebrate settlement along a gradient of ocean acidification at natural CO2 vents (Tyrrhenian Sea). Biol Mar Mediterr 19:49–52

    Google Scholar 

  • Rodolfo-Metalpa R, Lombardi C, Cocito S et al (2010) Effects of ocean acidification and high temperatures on the bryozoan Myriapora truncata at natural CO2 vents. Mar Ecol 31:447–456. doi:10.1111/j.1439-0485.2009.00354.x

    CAS  Google Scholar 

  • Rodolfo-Metalpa R, Houlbrèque F, Tambutté É et al (2011) Coral and mollusc resistance to ocean acidification adversely affected by warming. Nat Clim Chang 1:308–312. doi:10.1038/nclimate1200

    Article  CAS  Google Scholar 

  • Rouse GW, Gambi MC (1997) Cladistic relationships within Amphiglena Claparède (Polychaeta: Sabellidae) with a new species and a redescription of A. mediterranea (Leydig). J Nat Hist 31:999–1018

    Article  Google Scholar 

  • Rouse GW, Gambi MC (1998) Evolution of reproductive features and larval development in the genus Amphiglena (Polychaeta: Sabellidae). Mar Biol 131:743–754. doi:10.1007/s002270050365

    Article  Google Scholar 

  • San Martin G (2003) Fauna Iberica. Vol. 21. Annelida Polychaeta II. Syllidae. Consejo Superior de Investigaciones Cientificas, Spain, Madrid, p 554

  • Sardà R, Gil J, Taboada S, Gili JM (2009) Polychaete species captured in sediment traps moored in northwestern Mediterranean submarine canyons. Zool J Linn Soc 155:1–21. doi:10.1111/j.1096-3642.2008.00442.x

    Article  Google Scholar 

  • Scipione MB, Gambi MC, Lorenti M, et al. (1996) Vagile fauna of the leaf stratum of Posidonia oceanica and Cymodocea nodosa in the Mediterranean Sea. In: Seagrass biology: proceedings of an international workshop, pp 25–29

  • Suggett DJ, Hall-Spencer JM, Rodolfo-Metalpa R, Boatman TG, Payton R, Tye Pettay D, Johnson VR, Warner ME, Lawson T (2012) Sea anemones may thrive in a high CO2 world. Glob Chang Biol 18:3015–3025

  • Tedesco D (1996) Chemical and isotopic investigations of fumarolic gases from Ischia island (southern Italy): Evidences of magmatic and crustal contribution. J Volcanol Geotherm Res 74:233–242. doi:10.1016/S0377-0273(96)00030-3

    Article  CAS  Google Scholar 

  • Vieitez J, Alos C, Parapar J et al (2003) Fauna Iberica. Vol. 25. Annelida Polychaeta I. Consejo Superior de Investigaciones Cientificas, Spain, Madrid, p 536

  • Waldbusser GG, Marinelli RL, Whitlatch RB, Visscher PT (2004) The effects of infaunal biodiversity on biogeochemistry of coastal marine sediments. Limnol Oceanogr 49:1482–1492. doi:10.4319/lo.2004.49.5.1482

    Article  CAS  Google Scholar 

  • Widdicombe S, Needham HR (2007) Impact of CO2-induced seawater acidification on the burrowing activity of Nereis virens and sediment nutrient flux. Mar Ecol Prog Ser 341:111–122

    Article  Google Scholar 

  • Widdicombe S, Spicer JI (2008) Predicting the impact of ocean acidification on benthic biodiversity: What can animal physiology tell us? J Exp Mar Bio Ecol 366:187–197. doi:10.1016/j.jembe.2008.07.024

    Article  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge two anonymous reviewers for their constructive comments on an earlier version of the manuscript. We thank V. Rando and B. Iacono (Benthic Ecology Group, SZN) for their assistance in fieldwork and S. Perkins and P. Messina for their help in sorting the benthos of part of the collectors. We wish also to thank Frieder C., Levin L.A, Calosi P. and Turner L. for allowing to report the carbonate chemistry data of the vent area, collected in collaboration with MCG and ER in different periods. This research was partially supported by the RITMARE project, coordinated by the Italian National Research Council and funded by the Italian Ministry of Education, University and Research within the National Research Program 2011–2013. FM and KK acknowledge financial support through a Chambers fellowship, the Pew Charitable Trust and NSF. ER was supported by a PhD fellowship funded by the Stazione Zoologica A. Dohrn (Naples).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Ricevuto.

Additional information

Communicated by H.-O. Pörtner.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 240 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ricevuto, E., Kroeker, K.J., Ferrigno, F. et al. Spatio-temporal variability of polychaete colonization at volcanic CO2 vents indicates high tolerance to ocean acidification. Mar Biol 161, 2909–2919 (2014). https://doi.org/10.1007/s00227-014-2555-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-014-2555-y

Keywords

Navigation