Skip to main content
Log in

Species-specific dinoflagellate vertical distribution in temperature-stratified waters

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Thermal stratification is increasing in strength as a result of higher surface water temperature. This could influence the vertical distribution of vertically migrating dinoflagellates. We studied the diel vertical distribution of the dinoflagellates Heterocapsa triquetra and Prorocentrum minimum using stratified laboratory columns with two thermoclines of different strength (ΔT° = 10 or 17 °C), with below cline temperature of 8 °C. Above the thermocline, nutrient depletion simulated the natural summer conditions in the Baltic Sea. Our study shows that H. triquetra and P. minimum can behave differently in terms of their vertical occurrence, both in space and in time when subjected to thermoclines of different strength. Also, both dinoflagellate species showed species-specific distribution patterns. In the ΔT° = 10 °C treatment, H. triquetra cells performed a diel vertical migration (DVM) behavior just above the thermocline, but not in the ΔT° = 17 °C. In the ΔT° = 17 °C, the cells did not migrate and cell densities in the water column decreased over time. Opposing results were observed for P. minimum, where a DVM pattern was found exclusively below the thermocline of ΔT° = 17 °C, while in the ΔT° = 10 °C treatment, no clear DVM pattern was observed, and the highest number of cells were found in the cold bottom water. These results indicate that an increase in thermal stratification can influence species-specific dinoflagellate distribution, behavior, and survival.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Baek SH, Ki JS, Katano T, You K, Park BS, Shin HH, Shin K, Kim YO, Han M-S (2011) Dense winter bloom of the dinoflagellate Heterocapsa triquetra below the thick surface ice of brackish Lake Shihwa, Korea. Phycol Res 59:273–285

    Article  CAS  Google Scholar 

  • Behrenfeld JM, Worthington K, Sherrell MR, Chavez PF, Strutton P, McPhaden M, Shea MD (2006) Controls on tropical Pacific productivity revealed through nutrient stress diagnostics. Nature 442:1025–1028

    Article  CAS  Google Scholar 

  • Bollens SM, Rollwagen-Bollens G, Quenette JA, Bochdansky B (2011) Cascading migrations and implications for vertical fluxes in pelagic ecosystems. J Plankton Res 33:349–355

    Article  Google Scholar 

  • Bollens SM, Quenette JA, Rollwagen-Bollens G (2012) Predator-enhanced diel vertical migration in a planktonic dinoflagellate. Mar Ecol Prog Ser 447:49–54

    Article  Google Scholar 

  • Coma R, Ribes M, Serrana E, Jim’enez E, Salat J, Pascual J (2009) Global warming-enhanced stratification and mass mortality events in the Mediterranean. PNAS 106:6176–6181

    Article  CAS  Google Scholar 

  • Dale B, Edwards M, Reid PC (2006) Climate change and harmful algal blooms. In: Granéli E, Turner JT (eds) Ecology of harmful algae. Springer, Berlin Heidelberg, pp 367–378

    Chapter  Google Scholar 

  • Doney SC (2006) Plankton in a warmer world. Nature 444:69–696

    Article  Google Scholar 

  • Garce´s E (2002) Temporary cysts in dinoflagellates. In: Garce´s E, Zingone A, Montresor M, Reguera B, Dale B (eds) LIFEHAB: life histories of microalgal species causing harmful algal blooms. European Commission, Luxembourg, pp 46–48

    Google Scholar 

  • Grzebyk G, Berland B (1996) Influences of temperature, salinity and irradiance on growth of Prorocentrum minimum (Dinophyceae) from the Mediterranean Sea. J Plankton Res 18:1837–1849

    Article  Google Scholar 

  • Guillard RLL, Ryther JH (1962) Studies of marine planktonic diatoms: in Cyclotella nana Hustedt and Detonula confervacea (Cleve). Gran Can J Microbiol 8:229–239

    Article  CAS  Google Scholar 

  • Hajdu S, Pertola S, Kuosa H (2005) Prorocentrum minimum (Dinophyceae) in the Baltic Sea: morphology, occurrence-a review. Harmful Algae 4:471–480

    Article  CAS  Google Scholar 

  • Hällfors H, Hajdu S, Kuosa H, Larsson U (2011) Vertical and temporal distribution of the dinoflagellates Dinophysis acuminata and D. norvegica in the Baltic Sea. Boreal Environ Res 16:121–135

    Google Scholar 

  • Hällfors H, Backer H, Leppanen JM, Hällfors S, Hällfors G, Kuosa H (2013) The northern Baltic Sea phytoplankton communities in 1903–1911 and 1993–2005: a comparison of historical and modern species data. Hydrobiologia 707:109–133

    Article  Google Scholar 

  • Hansen PJ (1995) Growth and grazing response of a ciliate feeding on the red tide dinoflagellate Gyrodinium aureolum in monoculture and in mixture with a non-toxic alga. Mar Ecol Prog Ser 121:65–72

    Article  Google Scholar 

  • Hardeland R (1994) Induction of cyst formation by low temperature. Experientia 50:60–62

    Article  Google Scholar 

  • Heaney SI, Eppley RW (1981) Light, temperature and nitrogen as interacting factors affecting diel vertical migration of dinoflagellates in culture. J Plankton Res 3:331–344

    Article  Google Scholar 

  • Heaney SI, Furnass TI (1980) Laboratory models of diel migration of the dinoflagellate Ceratium hirundinella. Freshw Biol 10:163–170

    Article  Google Scholar 

  • HELCOM (2007) Climate change in the Baltic Sea area HELCOM Thematic Assessment in 2007 Baltic Sea Environment. Proceedings No 111

  • Intergovernmental Panel on Climate Change (IPCC) (2007) Coastal systems and low-lying areas climate change: impacts, adaptation and vulnerability contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change. In: Parry ML, Canziani OF, Palutikof JP, Van der Linden PJ, Hanson CE (eds) Coastal systems and low-lying areas. Cambridge Univ Press Cambridge, UK, pp 315–356

  • Jensen MO, Moestrup O (1997) Autoecology of the toxic dinoflagellate Alexandrium ostenfeldii: life history and growth at different temperatures and salinities. Eur J Phyc 32:9–18

    Article  Google Scholar 

  • Jephson T, Carlsson P (2009) Species-and stratification-dependent diel vertical migration behaviour of three dinoflagellate species in a laboratory study. J Plankton Res 31:1353–1362

    Article  Google Scholar 

  • Jephson T, Fagerberg T, Carlsson P (2011) Dependency of dinoflagellate vertical migration on salinity stratification. Aquat Microb Ecol 63:255–264

    Article  Google Scholar 

  • Kamykowski D (1981) Laboratory experiments on the diurnal vertical migration on marine dinoflagellates through temperature gradients. Mar Biol 62:57–64

    Article  Google Scholar 

  • Kamykowski D, McCollum AS (1986) The temperature acclimatized swimming rate of selected marine dinoflagellates. J Plankton Res 8:275–287

    Article  Google Scholar 

  • Kamykowski D, Zentara SJ (1977) The diurnal vertical migration of the motile phytoplankton through temperature gradients. Limnol Oceanogr 22:148–152

    Article  Google Scholar 

  • Kamykowski D, Milligan E, Reed RE (1998) Biochemical relationships with the orientation of the autotrophic dinoflagellate Gymnodinium breve under nutrient replete conditions. Mar Ecol Prog Ser 167:105–117

    Article  CAS  Google Scholar 

  • Kimura T, Watanabe M, Kohata K, Sudo R (1999) Phosphate metabolism during diel vertical migration in the raphidophycean alga, Chattonella antique. J Appl Phycol 11:301–311

    Article  CAS  Google Scholar 

  • Kononen K, Huttunen M, Hällfors S, Gentien P, Lunven M, Huttula T, Laanemets J, Lilover M, Pavelson J, Stips A (2003) Development of a deep chlorophyll maximum of Heterocapsa triquetra Eherenb at the entrance to the Gulf of Finland. Limnol Oceanogr 48:594–607

    Article  Google Scholar 

  • Laanemets J, Kononen K, Pavelson J, Poutanen EL (2004) Vertical location of seasonal nutriclines in the western Gulf of Finland. J Mar Syst 52:1–13

    Article  Google Scholar 

  • Levandowsky M, Kaneta PJ (1987) Behavior in dinoflagellates. In: Taylor FJR (ed) The biology of dinoflagellates. Blackwell, Oxford, pp 360–398

  • Levitus S, Antonov J, Boyer T (2005) Warming of the world ocean, 1955–2003. Geophys Res Lett 32:L02604

  • Lindholm T, Nummelin C (1999) Red tide of the dinoflagellate Heterocapsa triquetra (Dinophyta) in ferry-mixed coastal inlet. Hydrobiologia 393:245–251

    Article  CAS  Google Scholar 

  • Lips U, Lips I, Liblik T, Kuvaldina N (2010) Processes responsible for the formation and maintenance of sub-surface chlorophyll maxima in the Gulf of Finland. Estuar Coast Shelf Sci 88:339–349

    Article  CAS  Google Scholar 

  • Litaker RW, Warner VE, Rhyne C, Duke CS, Kenney BE, Ramus J, Tester PA (2002) Effect of diel and interday variations in light on the cell division pattern and in situ growth rates of the bloom-forming dinoflagellates Heterocapsa triquetra. Mar Ecol Prog Ser 232:63–74

    Article  Google Scholar 

  • MacIntyre JG, Cullen JJ, Cembella AD (1997) Vertical migration, nutrition and toxicity in the dinoflagellates Alexandrium tamarense. Mar Ecol Prog Ser 148:201–216

    Article  Google Scholar 

  • Nielsen LT, Lundholm N, Hansen PJ (2007) Does irradiance influence the tolerance of marine phytoplankton to high pH? Mar Biol Res 3:446–453

    Article  Google Scholar 

  • Olli K (2004) Temporary cyst formation of Heterocapsa triquetra (Dinophyceae) in natural populations. Mar Biol 145:1–8

    Article  Google Scholar 

  • Olsson P, Graneli E (1991) Observations on diurnal vertical migration and phased cell division for three coexisting marine dinoflagellates. J Plankton Res 13:1313–1324

    Article  Google Scholar 

  • Richardson K, Beardall J, Raven JA (1983) Adaptation of unicellular algae to irradiance: an analysis of strategies. New Phytol 93:157–191

    Article  Google Scholar 

  • Richter PR, Hader DP, Goncalves RJ et al (2007) Vertical migration and motility responses in three marine phytoplankton species exposed to solar radiation. Photochem Photobiol 83:810–817

    Article  CAS  Google Scholar 

  • Ross ON, Sharples J (2007) Phytoplankton motility and the competition for nutrients in the thermocline. Mar Ecol Prog Ser 347:21–38

    Article  CAS  Google Scholar 

  • Ruosteenoja K, Tuomenvirta H, Jylhä K (2007) GCM-based regional temperature and precipitation change estimates for Europe under four SRES scenarios applying super-ensemble pattern-scaling method. Clim Change 81:193–208

    Article  Google Scholar 

  • Schernewski G, Hofstede J, Neumann T (2011) Global change and Baltic coastal zones, vol 1. Springer, Dordrecht, p 1

    Google Scholar 

  • Sherman K, Belkin IM, Friedland KD, O’Reilly J, Hyde K (2009) Accelerated warming and emergent trends in fisheries biomass yields of the world’s large marine ecosystems. Ambio 38:215–224

    Article  Google Scholar 

  • Sjöqvist C, Lindholm TJ (2011) Natural co-occurrence of Dinophysis acuminata (Dinoflagellata) and Mesodinium rubrum (Ciliophora) in thin layers in a coastal inlet. J Eukaryot Microbiol 58:365–372

    Article  Google Scholar 

  • Smayda TJ, Reynolds CS (2001) Community assembly in marine phytoplankton: application of recent models to harmful dinoflagellate blooms. J Plankton Res 23:447–461

    Article  Google Scholar 

  • Tangen K (1980) Brown water in the Oslofjord, Norway, in September 1979 caused by the toxic Prorocentrum minimum and other dinoflagellates. Blyttia 38:145–155

    Google Scholar 

  • Throndsen J (1973) Motility in some marine nanoplankton flagellates. Norw J Zool 21:193–200

    Google Scholar 

  • Valderrama JC (1995) Methods of nutrient analysis. In: Hallegraeff GM, Anderson DM, Cembella AD (eds) Manual of harmful marine microalgae. IOC Manual No 33. UNESCO, Paris, pp 252–268

    Google Scholar 

  • Venrick EL (1978) How many cells to count? In: Sournia A (ed) Phytoplankton manual UNESCO. Page Brothers, Norwich, pp 167–180

    Google Scholar 

  • Wong KTM, Lee JHW, Hodgkiss IJ (2007) A simple model for forecast of coastal algal blooms. Estuar Coast Shelf Sci 74:175–196

    Article  Google Scholar 

  • Yamazaki H, Kamykowski D (1991) The vertical trajectories of motile phytoplankton in a wind-mixed water column. Deep Sea Res 38:219–241

    Article  Google Scholar 

Download references

Acknowledgments

We thank Monica Appelgren (University of Gothenburg Marine Culture—GUMACC), University of Gothenburg, Department of Biological and Environmental Sciences, for supplying the dinoflagellate cultures. We also thank the Royal Swedish Academy of Sciences and the Carl Trygger foundation for funding this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Therese Jephson.

Additional information

Communicated by U.-G. Berninger.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Souza, K.B., Jephson, T., Hasper, T.B. et al. Species-specific dinoflagellate vertical distribution in temperature-stratified waters. Mar Biol 161, 1725–1734 (2014). https://doi.org/10.1007/s00227-014-2446-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-014-2446-2

Keywords

Navigation