Skip to main content

Advertisement

Log in

New estimates of microalgae production based upon nitrate reductions under sea ice in Canadian shelf seas and the Canada Basin of the Arctic Ocean

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

New estimates of production of sub-ice and ice microalgae in the shelf seas of the Canadian Arctic and in the Canada Basin of the Arctic Ocean derived from reduction of nitrates in the water column, as recorded in time series available in publicly held data bases, suggest that it is of greater magnitude (up to 30 g C m−2 year−1) and represent a higher proportion (up to 50 % on the shelf and 90 % in the Canada Basin) of net community production than previously estimated for both areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anderson LA, Sarmiento JL (1994) Redfield ratios of remineralization determined by nutrient data analysis. Global Biogeochem Cycles 8:65–80

    Article  CAS  Google Scholar 

  • Anderson LG, Jones EP, Swift JH (2003) Export production in the central Arctic Ocean evaluated from phosphate deficits. J Geophys Res. doi:10,1029/2001JC001057

    Google Scholar 

  • Apollonio S (1959) Hydrobiological measurements on IGY Drifting Station Bravo. Trans Am Geophys Union 40:316–319

    Google Scholar 

  • Apollonio S, Matrai P (2011) Marine primary production in the Canadian Arctic, 1956, 1961–1963. Polar Biol 34:767–774

    Article  Google Scholar 

  • Arrigo KR, Mock T, Lizotte MP (2010) Primary production and sea ice. In: Thomas DN, Dieckmann GS (eds) Sea ice. Wiley, Oxford, pp 283–325

    Google Scholar 

  • Arrigo KR, Perovich DK, Pickart RS, Brown ZW, van Dijken GL, Lowry KE, Mills MM, Palmer MA, Balch WM, Bahr F, Bates NR, Benitez-Nelson C, Bowler B, Brownlee E, Ehn JK, Frey KE, Garley R, Laney SR, Lubelczyk L, Mathis J, Matsuoka A, Mitchell BG, Moore GWK, Ortega-Retuerta E, Pal S, Polashenski CM, Reynolds RA, Scheiber B, Sosik HM, Stephens M, Swift JH (2012) Massive phytoplankton blooms under Arctic sea ice. Science 336:1408

    Article  CAS  Google Scholar 

  • Cabaniss GH (1962) Geophysical data from U.S. Arctic Ocean Drift Stations 1957–1960. Air Force Cambridge Research Laboratories, Office of Aerospace Research, U.S. Air Force. Terrestrial Sciences Laboratory Project 7628

  • Carmack E, McLaughlin F (2011) Towards recognition of physical and geochemical change in subarctic and Arctic Seas. Prog Oceanogr 90:90–104

    Article  Google Scholar 

  • Carmack E, Wassmann P (2006) Food webs and physical-biological coupling on pan-Arctic shelves: unifying concepts and comprehensive perspectives. Prog Oceanogr 71:446–477

    Article  Google Scholar 

  • Carmack EC, Macdonald RW, Jasper S (2004) Phytoplankton productivity on the Canadian shelf of the Beaufort Sea. Mar Ecol Prog Ser 277:37–50

    Article  Google Scholar 

  • Carmack E, Barber D, Christensen JH, Macdonald R, Rudels B, Sakshaug E (2006) Climate variability and physical forcing of the food webs and the carbon budget on panarctic shelves. Prog Oceanogr 72:145–181. doi:10/1016/j.pocean.2006.10.005

    Article  Google Scholar 

  • Codispoti LA, Friederich GE, Sakamoto CM, Gordon LI (1991) Nutrient cycling and primary production in the marine systems of the Arctic and Antarctic. J Mar Syst 2:359–384

    Article  Google Scholar 

  • Codispoti LA, Kelly V, Thessen A, Matrai PA, Suttles S, Hill V, Steele M, Light B (2013) Synthesis of primary production in the Arctic Ocean: III. Nitrate and phosphate based estimates of net community production. Prog Oceanogr. http://dx.doi.org/10.1016/j.pocean.2012.11.006. http://www.sciencedirect.com/science/article/pii/S0079661112001723

  • Cota GF, Horne EPW (1989) Physical control of arctic ice algal production. Mar Ecol Prog Ser 52:111–121

    Article  Google Scholar 

  • Cota GF, Prinsenberg SJ, Bennett EB, Loder JW, Lewis MR, Anning JL, Watson NMF, Harris LR (1987) Nutrient fluxes during extended blooms of Arctic ice algae. J Geophys Res 92:1951–1962

    Article  CAS  Google Scholar 

  • Cota G, Harris JLR, Harrison WG, Smith REH (1990) Impact of ice algae on inorganic nutrients in seawater and sea ice in Barrow Strait, NWT, Canada, during spring. Can J Fish Aquat Sci 47:1402–1415

    Article  CAS  Google Scholar 

  • Cota GF, Pomeroy LR, Harrison WG, Jones EP, Peters F, Sheldon WM Jr, Weingartner TR (1996) Nutrients, primary production and microbial heterotrophy in the southwestern Chukchi Sea: Arctic summer nutrient depletion and heterotrophy. Mar Ecol Prog Ser 135:247–258

    Article  Google Scholar 

  • Deal C, Jin M, Elliott S, Hunke E, Maltrud M, Jeffrey N (2011) Large-scale modeling of primary production and ice algal biomass within arctic sea ice in 1992. J Geophys Res. doi:10.1029/2010JC006409

    Google Scholar 

  • English TS (1961) Some biological oceanographic observations in the central North Polar Sea, Drift Station Alpha, 1957–1958. Arctic Institute of North America, Research Paper No. 13

  • Fisher NS, Schwarzenbach RP (1978) Fatty acid dynamics in Thalassiosira pseudonana (Bacillariophyceae): implications for physiological ecology. J Phycol 14:143–150

    Article  CAS  Google Scholar 

  • Fortier M, Fortier L, Michel C, Legendre L (2002) Climatic and biological forcing of the vertical flux of biogenic particles under seasonal Arctic sea ice. Mar Biol Prog Ser 225:1–16

    Article  Google Scholar 

  • Garneau M-È, Roy S, Lovejoy C, Gratton Y, Vincent WF (2008) Seasonal dynamics of bacterial biomass and production in a coastal Arctic ecosystem: Franklin Bay, western Canadian Arctic. J Geophys Res. doi:10.1029/2007JC004281

    Google Scholar 

  • Geider R, La Roche J (2002) Redfield revisited: variability of C:N:P in marine microalgae and its biochemical basis. Eur J Phycol 37:1–17

    Article  Google Scholar 

  • Gosselin M, Levasseur M, Wheeler PA, Horner RA, Booth BC (1997) New measurements of phytoplankton and ice algae production in the Arctic Ocean. Deep Sea Res 44:1623–1644

    Article  CAS  Google Scholar 

  • Gosselin M, Brugel S, Demers S, Juul-Pedersen T, Larouche P, LeBlanc B, Michel C, Nozais C, Poulin M, Price N, Riedel A, Rózanska M, Simpson K, Tremblay J-É (2008) Light, nutrients and primary production. In: Fortier L, Barber D, Michaud J (eds) On thin ice: a synthesis of the Canadian Arctic Shelf Exchange Study (CASES). Aboriginal Issues Press, Winnipeg, pp 69–83

    Google Scholar 

  • Gradinger R (2009) Sea-ice algae: major contributors to primary production and algal biomass in the Chukchi and Beaufort Seas during May/June 2002. Deep Sea Res 56:1201–1212

    Article  CAS  Google Scholar 

  • Harrison WG, Head EJH, Conover RJ, Longhurst AR, Sameoto DD (1985) The distribution and metabolism of urea in the eastern Canadian Arctic. Deep Sea Res 32:23–42

    Article  CAS  Google Scholar 

  • Harrison WG, Cota GF, Smith REH (1990) Nitrogen utilization in ice algal communities of Barrow strait, Northwest Territories, Canada. Mar Ecol Prog Ser 67:275–283

    Article  Google Scholar 

  • Hill V, Cota G (2005) Spatial patterns of primary production on the shelf slope and basin of the Western Arctic in 2002. Deep Sea Res 52:3344–3354

    Article  Google Scholar 

  • Horner RA, Schrader GC (1982) Relative contributions of ice algae, phytoplankton and benthic microalgae to primary production in nearshore regions of the Beaufort Sea. Arctic 35:485–503

    Google Scholar 

  • Ingram RG, Williams WJ, van Hardenberg B, Dawe JT, Carmack EC (2008) Seasonal circulation over the Canadian Beaufort shelf. In: Fortier L, Barber D, Michaud J (eds) On thin ice: a synthesis of the Canadian Arctic Shelf Exchange Study (CASES). Aboriginal Issues Press, Winnipeg, pp 13–35

    Google Scholar 

  • Juul-Pedersen T, Michel C, Gosselin M (2010) Sinking export of particulate organic material from the euphotic zone in the eastern Beaufort Sea. Mar Ecol Prog Ser 410:55–70

    Article  CAS  Google Scholar 

  • Kirchman DL, Wheeler PA (1998) Uptake of ammonium and nitrate by heterotrophic bacteria and phytoplankton in the sub-Arctic Pacific. Deep-Sea Res I 45:347–365

    Google Scholar 

  • Kirchman DL, Hill V, Cottrell MT, Gradinger R, Mainstrom RR, Parker A (2009) Standing stocks, production and respiration of phytoplankton and heterotrophic bacteria in the western Arctic Ocean. Deep-Sea Res 56:1237–1248

    Article  CAS  Google Scholar 

  • Lavoie D (2008) Modeling primary production in seasonally ice-covered regions of the Arctic Ocean and its response to climate change. University of Victoria, Victoria, Dissertation

    Google Scholar 

  • Legendre L, Ackley SF, Gieckmann GS, Gulliksen B, Horner R, Hoshiai T, Melnikov IA, Reeburgh WS, Spindler M, Sullivan CW (1992) Ecology of sea ice biota 2. Global significance. Polar Biol 12:429–444

    Google Scholar 

  • Leu E, Søreide JE, Hessen DO, Falk-Petersen S, Berge J (2011) Consequences of changing sea-ice cover for primary and secondary producers in the European Arctic shelf seas: timing, quantity and quality. Prog Oceanogr 90:18–32

    Article  Google Scholar 

  • Lovejoy C, Vincent WF, Bonilla S, Roy S, Martineau M-J, Terrado R, Potvin M, Massana R, Pedrós-Alió C (2007) Distribution, phylogeny, and growth of cold-adapted picoprasinophytes in Arctic seas. J Phycol 43:78–89

    Article  CAS  Google Scholar 

  • Macdonald RW, Carmack EC (1991) Age of Canada Basin deepwaters: a way to estimate primary production for the Arctic Ocean. Science 254:1348–1350

    Article  CAS  Google Scholar 

  • Macdonald RW, Wong CS, Erikson PE (1987) The distribution of nutrients in the southeastern Beaufort Sea: implications for water circulation and phytoplankton production. J Geophys Res 92:2939–2952

    Article  CAS  Google Scholar 

  • Matrai PA, Vernet M, Wassmann P (2007) Relating temporal and spatial patterns of DMSP in the Barents Sea to phytoplankton biomass and productivity. J Mar Syst 67:87–101

    Article  Google Scholar 

  • McLaughlin FA, Carmack EC (2010) Deepening of the nutricline and chlorophyll maximum in the Canada Basin interior, 2003–2009. Geophys Res Lett. doi:10.1029/2010GL045459

    Google Scholar 

  • McLaughlin FA, Carmack EC, Macdonald RW, Bishop JKB (1996) Physical and geochemical properties across the Atlantic/Pacific water mass front in the southern Canadian Basin. J Geophys Res 101:1183–1197

    Article  CAS  Google Scholar 

  • Melnikov IA (1997) The Arctic sea ice ecosystem. Gordon and Breach Science Publishers, Amsterdam

    Google Scholar 

  • Michel C, Ingram RG, Harris LR (2006) Variability in oceanographic and ecological processes in the Canadian Arctic Archipelago. Prog Oceanogr 71:379–401

    Article  Google Scholar 

  • Mock T, Gradinger R (1999) Determination of Arctic ice algal production with a new in situ incubation technique. Mar Ecol Prog Ser 177:15–26

    Article  CAS  Google Scholar 

  • Mundy CJ, Gosselin M, Ehn J, Gratton Y, Rossnagel A, Barber DG, Martin J, Tremblay J-E, Palmer M, Arrigo KR, Darnis G, Fortier L, Else B, Papakyriakou T (2009) Contribution of under-ice primary production to an ice-edge upwelling phytoplankton bloom in the Canadian Beaufort Sea. Geophys Res Lett. doi:10.1029/2009GL038837

    Google Scholar 

  • O’Brien MC, Macdonald RW, Melling H, Iseki K (2006) Particle fluxes and geochemistry on the Canadian Beaufort Shelf: implications for sediment transport and deposition. Cont Shelf Res 26:41–81

    Article  Google Scholar 

  • Pomeroy LR (1997) Primary production in the Arctic Ocean estimated from dissolves oxygen. J Mar Syst 10:1–8

    Article  Google Scholar 

  • Popova EE, Yool AC, Coward AC, Aksenov YK, Alderson SG, de Cuevas BA, Anderson TR (2010) Control of primary production in the Arctic by nutrients and light: insights from a high resolution ocean general circulation model. Biogeosciences 7:3569–3591

    Article  CAS  Google Scholar 

  • Sakshaug E (2004) Primary and secondary production in Arctic seas. In: Stein R, Macdonald RW (eds) The organic carbon cycle in the Arctic Ocean. Springer, Berlin, pp 57–82

    Chapter  Google Scholar 

  • Sanders RW, Gast RJ (2011) Bacterivory by phototrophic picoplankton and nanoplankton in Arctic waters. FEMS Microbiol Ecol. doi:10.1111/j.1574-6941.2011.01253.x

    Google Scholar 

  • Sherr BF, Sherr EB (2003) Community respiration/production and bacterial activity in the upper water column of the central Arctic Ocean. Deep-Sea Res 50:529–542

    CAS  Google Scholar 

  • Simpson KG, Tremblay J-É, Gratton Y, Price NM (2008) An annual study of inorganic and organic nitrogen and phosphorus and silicic acid in the southeastern Beaufort Sea. J Geophys Res. doi:10.1029/2007JC004462

    Google Scholar 

  • Smith REH, Herman AW (1991) Productivity of sea ice algae: in situ vs. incubator methods. J Mar Syst 2:97–110

    Article  Google Scholar 

  • Smith WO, Niebauer HJ (1993) Interactions between biological and physical processes in Arctic seas: investigations using numerical models. Rev Geophys 31:189–209

    Article  Google Scholar 

  • Smith REH, Anning J, Clement P, Cota G (1988) Abundance and production of ice algae in Resolute Passage, Canadian Arctic. Mar Ecol Prog Ser 48:251–263

    Article  Google Scholar 

  • Smith REH, Gosselin M, Kudoh S, Robineau B, Taguchi S (1997) DOC and its relationship to algae in bottom ice communities. J Mar Syst 11:71–80

    Article  Google Scholar 

  • Stirling I (1980) The biological importance of polynyas in the Canadian Arctic. Arctic 33:303–315

    Google Scholar 

  • Subba Rao DV, Platt T (1984) Primary production of Arctic waters. Polar Biol 3:191–201

    Article  Google Scholar 

  • Syvertsen EE (1991) Ice algae in the Barents Sea: types of assemblages, origin, fate and role in the ice-edge phytoplankton bloom. In: Sakshaug E, Hopkins CCE, Øritsland NA (eds) Proceedings of the pro mare symposium on polar marine ecology, Trondheim, 12–16 May 1990. Polar Res 10:277–287

  • Terrado R, Lovejoy C, Massana R, Vincent WF (2008) Microbial food web responses to light and nutrients beneath the coastal Arctic Ocean sea ice during the winter-spring transition. J Mar Syst 74:964–977

    Article  Google Scholar 

  • Tremblay JE, Simpson K, Martin J, Miller L, Gratton Y, Barber D, Price NM (2008) Vertical stability and the natural dynamics of nutrients and chlorophyll fluorescence in the coastal, southeast Beaufort Sea. J Geophys Res. doi:10.1029/2007JC004547

    Google Scholar 

  • Tremblay JE, Bélanger S, Barber DG, Asplin M, Martin J, Damis G, Fortier L, Gratton Y, Link H, Archambault P, Sallon A, Michel C, Williams WJ, Philippe B, Gosselin M (2011) Climate forcing multiplies biological productivity in the coastal Arctic Ocean. Geophys Res Lett. doi:10.1029/2011GL048825

    Google Scholar 

  • Vernet M, Matrai PA, Andreassen I (1998) Synthesis of particulate and extracellular carbon by phytoplankton in the Barents Sea. J Geophys Res 103:1023–1037

    Article  CAS  Google Scholar 

  • Vincent WF, Pedrós-Alió C, Suttle C, Lovejoy C, Deming J, Osburn C, Lesack L, Xie H, Babin M, Wilmotte A (2008) Microbial communities and carbon fluxes. In: Fortier L, Barber D, Michaud J (eds) On thin ice: a synthesis of the Canadian Arctic Shelf Exchange Study (CASES). Aboriginal Issues Press, Winnipeg, pp 85–99

    Google Scholar 

  • Wassmann P (2011) Arctic marine ecosystems in an era of rapid climate change. Prog Oceanogr 90:1–17

    Article  Google Scholar 

  • Wassmann P, Reigstad M (2011) Future Arctic Ocean seasonal ice zones and implications for pelagic-benthic coupling. Oceanography 24:220–231

    Article  Google Scholar 

  • Welch HE, Bergmann MA (1989) Seasonal development of ice algae and its prediction from environmental factors near Resolute, NWT, Canada. Can J Fish Aquat Sci 46:1793–1804

    Article  Google Scholar 

  • Welch HE, Bergmann MA, Sifferd TD, Martin KA, Curtis MF, Crawford RE, Conover RJ, Hop H (1992) Energy flow through the marine ecosystem of the Lancaster Sound region, Arctic Canada. Arctic 45:343–357

    Google Scholar 

  • Wheeler PA, Gosselin M, Sherr EE, Thibault D, Kirchman DL, Benner R, Whitledge TE (1996) Active cycling of organic carbon in the central Arctic Ocean. Nature 380:697–699

    Article  CAS  Google Scholar 

  • Yool A, Martin AP, Fermandez C, Clark DR (2007) The significance of nitrification for oceanic new production. Nature 447:999–1002

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to M. Steele for his helpful comments. PA Matrai was supported by National Science Foundation ARC-0901438. These data are publicly available at http://psc.apl.washington.edu/cgi-bin/PPobs/PPobs.cgi, along with the Arctic Primary Productivity (ARCSS-PP) nutrient data set (Codispoti et al. 2013) that is also available at National Oceanographic Data Center (www.nodc.noaa.gov/).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia Matrai.

Additional information

Communicated by S.W.A. Naqvi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matrai, P., Apollonio, S. New estimates of microalgae production based upon nitrate reductions under sea ice in Canadian shelf seas and the Canada Basin of the Arctic Ocean. Mar Biol 160, 1297–1309 (2013). https://doi.org/10.1007/s00227-013-2181-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-013-2181-0

Keywords

Navigation