Skip to main content

Advertisement

Log in

Patterns of abundance, population size structure and microhabitat usage of Paracentrotus lividus (Echinodermata: Echinoidea) in SW Portugal and NW Italy

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

In coastal habitats, wave exposure influences several aspects of the life history of marine organisms. Here, we assess how hydrodynamic conditions can generate variation in density, size structure and microhabitat usage of Paracentrotus lividus and whether these effects are consistent between regions that are markedly different for oceanic climate, such as the coasts of SW Portugal and NW Italy. The abundance of P. lividus was ~4 times higher in SW Portugal than in NW Italy, but within each region, there was no effect of wave exposure. In SW Portugal, higher urchin abundances were found at shallower depths, while no effect of depth on urchin abundance emerged in NW Italy. Most of the variation in urchin abundance occurred at small spatial scales (metres), and our results suggest that habitat complexity, that is, the presence of cracks and crevices, is an important determinant of patterns of distribution of this species. The population in NW Italy was characterized by a unimodal size distribution, with a higher proportion of medium-sized individuals. In contrast, in SW Portugal, smaller individuals represented a large proportion of the populations. Size structure varied between exposed and sheltered habitats in SW Portugal, suggesting that the proportion of individuals from different size cohorts may vary along wave-exposure gradients as a result of direct or indirect effects of hydrodynamic forces. In SW Portugal, most urchins occurred in burrows, while in NW Italy, urchins were mainly observed in crevices. These results suggest that creating/occupying burrows might be an adaptive behaviour that allows sea urchins to better withstand stressful hydrodynamic conditions and, therefore, are more common on exposed Atlantic coasts. Overall, our study suggests that the effects of hydrodynamic forces on sea urchin populations are context dependent and vary according to background oceanic climate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecol 26(1):32–46

    Google Scholar 

  • Anderson MJ (2006) Distance-based tests for homogeneity of multivariate dispersions. Biometrics 62:245–253

    Article  Google Scholar 

  • Anderson MJ, Gorley RN, Clarke KR (2008) PERMANOVA+ for PRIMER: guide to software and statistical methods. PRIMER-E, Plymouth, UK

    Google Scholar 

  • APAT (2004) Atlante delle coste: Il moto ondoso a largo delle coste italiane. APAT, Agenzia per la protezione dell’ambiente e per i servizi tecnici, Dipartimento tutela acque interne e marine

  • Bell EC, Denny MW (1994) Quantifying “wave exposure”: a simple device for recording maximum velocity and results of its use at several field sites. J Exp Mar Biol Ecol 181(1):9–29

    Article  Google Scholar 

  • Benedetti-Cecchi L, Cinelli F (1995) Habitat heterogeneity, sea urchin grazing and the distribution of algae in littoral rock pools on the west coast of Italy (western Mediterranean). Mar Ecol Prog Ser 126:203–212

    Article  Google Scholar 

  • Benedetti-Cecchi L, Bulleri F, Cinelli F (1998) Density dependent foraging of sea urchins in shallow subtidal reefs on the west coast of Italy (western Mediterranean). Mar Ecol Prog Ser 163:203–211

    Article  Google Scholar 

  • Botsford LW, Smith BD, Quinn JF (1994) Bimodality in size distributions: the red sea urchin Strongylocentrotus Franciscanus as an example. Ecol Appl 4:42–50

    Article  Google Scholar 

  • Boudouresque CF, Verlaque M (2007) Ecology of Paracentrotus lividus. In: Lawrence JM (ed) Edible sea urchins: biology and ecology. Developments in aquaculture and fisheries science, 32, 2nd edn. Elsevier, Amsterdam, pp 243–285

  • Bulleri F, Benedetti-Cecchi L, Cinelli F (1999) Grazing by the sea urchins Arbacia lixula L. and Paracentrotus lividus Lam. in the Northwest Mediterranean. J Exp Mar Biol Ecol 241(1):81–95

  • Carreiro-Silva M, McClanahan TR (2001) Echinoid bioerosion and herbivory on Kenyan coral reefs: the role of protection from fishing. J Exp Mar Biol Ecol 262(2):133–153

    Article  Google Scholar 

  • Cebrian E, Uriz MJ (2006) Grazing on fleshy seaweeds by sea urchins facilitates sponge Cliona viridis growth. Mar Ecol Prog Ser 323:83–89

    Article  Google Scholar 

  • Chellazi G, Serra G, Bucciarelli G (1997) Zonal recovery after experimental displacement in two sea urchins co-occuring in the Mediterranean. J Exp Mar Biol Ecol 212:1–7

    Article  Google Scholar 

  • Clemente S, Hernández JC (2008) Influence of wave exposure and habitat complexity in determining spatial variation of the sea urchin Diadema aff. antillarum (Echinoidea: Diadematidae) populations and macroalgal cover (Canary Islands-Eastern Atlantic Ocean). Rev Biol Trop 56(3):229–254

    Google Scholar 

  • Clemente S, Hernández JC, Toledo K, Brito A (2007) Predation upon Diadema aff. antillarum in barren grounds in the Canary Islands. Sci Mar 71(4):745–754

    Google Scholar 

  • Dean TA, Schroeter SC, Dixon JD (1984) Effects of grazing by two species of sea urchins (Strongylocentrotus franciscanus and Lytechinus anamesus) on recruitment and survival of two species of kelp (Macrocystis pyrifera and Pterygophora californica). Mar Biol 78(3):301–313

    Article  Google Scholar 

  • Denny M (1988) Biology and the mechanics of the wave-swept environment. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Denny MW, Miller LP, Stokes MD, Hunt LJH, Helmuth BST (2003) Extreme water velocities: topographical amplification of wave-induced flow in the surf zone of rocky shores. Limnol Oceanogr 48(1):1–8

    Article  Google Scholar 

  • Eklöf JS, de la Torre-Castro M, Gullström M, Uku J, Muthiga N, Lyimo T, Bandeira SO (2008) Sea urchin overgrazing of seagrasses: a review of current knowledge on causes, consequences, and management. Estuar Coast Shelf Sci 79(4):569–580

    Article  Google Scholar 

  • Fiúza AFG, Macedo ME, Guerreiro MR (1982) Climatological space and time variation of the Portuguese coastal upwelling. Oceanol Acta 5:31–40

    Google Scholar 

  • Franco L, Piscopia R, Corsini S, Inghilesi R (2004) L’Atlante delle onde nei mari italiani—Italian Wave Atlas. APAT, Agenzia per la protezione dell’ambiente e per i servizi tecnici, Dipartimento tutela acque interne e marine, Servizio mareografico/Università degli studi di Roma Tre, Dipartimento di scienze dell’ingegneria civile, Roma

  • Gago J, Range P, Luis OJ (2003) Growth, reproductive biology and habitat selection of the sea urchin Paracentrotus lividus in the coastal waters of Cascais, Portugal. In: Féral JP, David B (eds) Echinoderm research 2001. A.A. Balkem, Lisse, pp 269–276

    Google Scholar 

  • García-March JR, Pèrez-Rojas L, García-Carrascosa AM (2007) Influence of hydrodynamic forces on population structure of Pinna nobilis L., 1758 (Mollusca: Bivalvia): The critical combination of drag force, water depth, shell size and orientation. J Exp Mar Biol Ecol 342(2):202–212

    Google Scholar 

  • Gaylord B, Blanchette CA, Denny M (1994) Mechanical consequences of size in wave-swept algae. Ecol Monogr 64(3):287–313

    Article  Google Scholar 

  • Guidetti P (2006) Marine reserves reestablish lost predatory interactions and cause community changes in rocky reefs. Ecol Appl 16(3):963–976

    Article  Google Scholar 

  • Guidetti P, Dulčić J (2007) Relationships among predatory fish, sea urchins and barrens in Mediterranean rocky reefs across a latitudinal gradient. Mar Environ Res 63(2):168–184

    Article  CAS  Google Scholar 

  • Guidetti P, Bianchi C, Chiantore M, Schiaparelli S, Morri C, Cattaneo-Vietti R (2004a) Living on the rocks: substrate mineralogy and the structure of subtidal rocky substrate communities in the Mediterranean Sea. Mar Ecol Prog Ser 274:57–68

    Article  Google Scholar 

  • Guidetti P, Terlizzi A, Boero F (2004b) Effects of the edible sea urchin, Paracentrotus lividus, fishery along the Apulian rocky coast (SE Italy, Mediterranean Sea). Fish Res 66(2–3):287–297

    Article  Google Scholar 

  • Harrold C, Reed DC (1985) Food availability, sea urchin grazing, and kelp forest community structure. Ecology 66(4):1160–1169

    Article  Google Scholar 

  • Hereu B, Zabala M, Linares C, Sala E (2004a) The effects of predator abundance and habitat structural complexity on survival of juvenile sea urchins. Mar Biol 146:293–299

    Article  Google Scholar 

  • Hereu B, Zabala M, Linares C, Sala E (2004b) Temporal and spatial variability in settlement of the sea urchin Paracentrotus lividus in the NW Mediterranean. Mar Biol 144(5):1011–1018

    Article  Google Scholar 

  • Hereu B, Linares C, Sala E, Garrabou J, Garcia-Rubies A, Diaz D, Zabala M (2012) Multiple processes regulate long-term population dynamics of sea urchins on Mediterranean rocky reefs. PLoS ONE 7(5):e36901

    Article  CAS  Google Scholar 

  • Hernández JC, Clemente S, Sangil C, Brito A (2008) The key role of the sea urchin Diadema aff. antillarum in controlling macroalgae assemblages throughout the Canary Islands (eastern subtropical Atlantic): an spatio-temporal approach. Mar Environ Res 66:259–270

    Article  Google Scholar 

  • Himmelman J (1986) Population biology of green sea urchins on rocky barrens. Mar Ecol Prog Ser 33:295–306

    Article  Google Scholar 

  • Instituto Hidrográfico (2006) Roteiros da Costa de Portugal–Portugal Continental–Do Cabo Carvoeiro ao Cabo de São Vicente. 3ª Edição edn. Instituto Hidrográfico, Lisboa

  • Jacinto D, Cruz T (2012) Paracentrotus lividus (Echinodermata: Echinoidea) attachment force and burrowing behavior in rocky shores of SW Portugal. In: Kroh A, Reich M (eds) Echinoderm research 2010: proceedings of the seventh European conference on Echinoderms, Göttingen, Germany, 2–9 October 2010. Zoosymposia 7:231–240

  • Kawamata S (1998) Effect of wave-induced oscillatory flow on grazing by a subtidal sea urchin Strongylocentrotus nudus (A. Agassiz). J Exp Mar Biol Ecol 224(1):31–48

    Google Scholar 

  • Lawrence JM (1975) On the relationships between marine plants and sea urchins. Oceanogr Mar Biol Annu Rev 13:213–286

    Google Scholar 

  • Legendre P, Legendre L (1998) Numerical ecology, 2nd English edn. Elsevier, Amsterdam, The Netherlands

  • Lindegarth M, Gamfeldt L (2005) Comparing categorical and continuous ecological analyses: effects of “wave exposure” on rocky shores. Ecology 86(5):1346–1357

    Article  Google Scholar 

  • Lissner AL (1983) Relationship of water motion to the shallow water distribution and morphology of two species of sea urchins. J Mar Res 41(4):691–709

    Article  Google Scholar 

  • Luckhurst BE, Luckhurst K (1978) Analysis of the influence of substrate variables on coral reef fish communities. Mar Biol 49(4):317–323

    Article  Google Scholar 

  • Nezlin NP, Lacroix G, Kostianoy AG, Djenidi S (2004) Remotely sensed seasonal dynamics of phytoplankton in the Ligurian Sea in 1997–1999. J Geophys Res 109:C07013

    Article  Google Scholar 

  • Nishizaki MT, Ackerman JD (2004) Juvenile-adult associations in sea urchins Strongylocentrotus franciscanus and S. droebachiensis: is nutrition involved? Mar Ecol Prog Ser 268:93–103

    Article  Google Scholar 

  • Oliveira PB, Nolasco R, Dubert J, Moita T, Peliz Á (2009) Surface temperature, chlorophyll and advection patterns during a summer upwelling event off central Portugal. Cont Shelf Res 29(5–6):759–774

    Article  Google Scholar 

  • Otter GW (1932) Rock-boring echinoids. Biol Rev 7:89–107

    Article  Google Scholar 

  • Peliz Á, Rosa TL, Santos AMP, Pissarra JL (2002) Fronts, jets, and counter-flows in the Western Iberian upwelling system. J Mar Syst 35(1–2):61–77

    Article  Google Scholar 

  • Prado P, Tomas F, Pinna S, Farina S, Roca G, Ceccherelli G, Romero J, Alcoverro T (2012) Habitat and scale shape the demographic fate of the Keystone Sea Urchin Paracentrotus lividus in Mediterranean Macrophyte communities. PLoS ONE 7(4):e35170

    Article  CAS  Google Scholar 

  • Queiroga H, Cruz T, dos Santos A, Dubert J, Gonzalez-Gordillo JI, Paula J, Peliz A, Santos AMP (2007) Oceanographic and behavioural processes affecting invertebrate larval dispersal and supply in the western Iberia upwelling ecosystem. Prog Oceanogr 74(2–3):174–191

    Article  Google Scholar 

  • Sala E, Zabala M (1996) Fish predation and the structure of the sea urchin Paracentrotus lividus populations in the NW Mediterranean. Mar Ecol Prog Ser 140:71–81

    Article  Google Scholar 

  • Scheibling RE, Robinson MC (2008) Settlement behaviour and early post-settlement predation of the sea urchin Strongylocentrotus droebachiensis. J Exp Mar Biol Ecol 365(1):59–66

    Article  Google Scholar 

  • Shears N, Babcock R (2002) Marine reserves demonstrate top-down control of community structure on temperate reefs. Oecologia 132(1):131–142

    Article  Google Scholar 

  • Siddon CE, Witman JD (2003) Influence of chronic, low-level hydrodynamic forces on subtidal community structure. Mar Ecol Prog Ser 261:99–110

    Article  Google Scholar 

  • Tegner MJ, Dayton PK, Edwards PB, Riser KL (1995) Sea urchin cavitation of giant kelp (Macrocystis pyrifera C. Agardh) holdfasts and its effects on kelp mortality across a large California forest. J Exp Mar Biol Ecol 191(1):83–99

    Google Scholar 

  • Tomas F, Romero J, Turon X (2004) Settlement and recruitment of the sea urchin Paracentrotus lividus in two contrasting habitats in the Mediterranean. Mar Ecol Prog Ser 282:173–184

    Article  Google Scholar 

  • Trudgill S, Smart P, Friederich H, Crabtree R (1987) Bioerosion of intertidal limestone, Co. Clare, Eire—1: Paracentrotus lividus. Mar Geol 74:85–98

    Article  Google Scholar 

  • Turon X, Giribet G, López S, Palacín C (1995) Growth and population structure of Paracentrotus lividus (Echinodermata: Echinoidea) in two contrasting habitats. Mar Ecol Prog Ser 122:193–204

    Article  Google Scholar 

  • Tuya F, Cisneros-Aguirre J, Ortega-Borges L, Haroun RJ (2007) Bathymetric segregation of sea urchins on reefs of the Canarian Archipelago: role of flow-induced forces. Estuar Coast Shelf Sci 73(3–4):481–488

    Article  Google Scholar 

  • Underwood AJ (1997) Experiments in ecology: their logical design and interpretation using analysis of variance. Cambridge University Press, Cambridge

    Google Scholar 

  • Vadas RL Sr, Smith BD, Beal B, Dowling T (2002) Sympatric growth morphs and size bimodality in the green sea urchin (Strongylocentrotus droebachiensis). Ecol Monogr 72(1):113–132

    Google Scholar 

  • Vanderklift MA, Lavery PS, Waddington KI (2009) Intensity of herbivory on kelp by fish and sea urchins differs between inshore and offshore reefs. Mar Ecol Prog Ser 376:203–211

    Article  Google Scholar 

  • Witman JD (1987) Subtidal coexistence: storms, grazing, mutualism, and the zonation of kelps and mussels. Ecol Monogr 57(2):167–187

    Article  Google Scholar 

  • Wooster WS, Bakun A, McLain DR (1976) The seasonal upwelling cycle along the eastern boundary of the North Atlantic. J Mar Res 34(2):131–141

    Google Scholar 

Download references

Acknowledgments

DJ thanks all divers that helped during the field work: T. Alestra, I. Bertocci, L. Tamburello, J.J. Castro, S. Castro, N. Baptista and T. Silva. We thank F. Tuya and an anonymous reviewer for helpful comments on an early draft of the paper. Host institution (Centro de Oceanografia) had the support of the Fundação para a Ciência e Tecnologia (FCT) (PEst-OE/MAR/UI0199/2011). DJ was funded with a PhD grant (SFRH/BD/28060/2006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Jacinto.

Additional information

Communicated by P. Kraufvelin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jacinto, D., Bulleri, F., Benedetti-Cecchi, L. et al. Patterns of abundance, population size structure and microhabitat usage of Paracentrotus lividus (Echinodermata: Echinoidea) in SW Portugal and NW Italy. Mar Biol 160, 1135–1146 (2013). https://doi.org/10.1007/s00227-013-2166-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-013-2166-z

Keywords

Navigation