Skip to main content
Log in

Microbial interactions with the cyanobacterium Microcystis aeruginosa and their dependence on temperature

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Associated heterotrophic bacteria alter the microenvironment of cyanobacteria and potentially influence cyanobacterial development. Therefore, we studied interactions of the unicellular freshwater cyanobacterium Microcystis aeruginosa with heterotrophic bacteria. The associated bacterial community was greatly driven by temperature as seen by DNA fingerprinting. However, the associated microbes also closely interacted with the cyanobacteria indicating changing ecological consequence of the associated bacterial community with temperature. Whereas concentration of dissolved organic carbon in cyanobacterial cultures changed in a temperature-dependent manner, its quality greatly varied under the same environmental conditions, but with different associated bacterial communities. Furthermore, temperature affected quantity and quality of cell-bound microcystins, whereby interactions between M. aeruginosa and their associated community often masked this temperature effect. Both macro- and microenvironment of active cyanobacterial strains were characterized by high pH and oxygen values creating a unique habitat that potentially affects microbial diversity and function. For example, archaea including ‘anaerobic’ methanogens contributed to the associated microbial community. This implies so far uncharacterized interactions between Microcystis aeruginosa and its associated prokaryotic community, which has unknown ecological consequences in a climatically changing world.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Blom JF, Jüttner F (2005) High crustacean toxicity of microcystin congeners does not correlate with high protein phosphatase inhibitory activity. Toxicon 46:465–470

    Article  CAS  Google Scholar 

  • Casamatta DA, Wickstrom CE (2000) Sensitivity of two disjunct bacterioplankton communities to exudates from the cyanobacterium Microcystis aeruginosa Kützing. Microb Ecol 41:64–73

    Google Scholar 

  • Cole JJ (1982) Interactions between bacteria and algae in aquatic ecosystems. Annu Rev Ecol Syst 13:291–314

    Article  Google Scholar 

  • Czarnecki O, Lippert I, Henning M, Welker M (2006) Identification of peptide metabolites of Microcystis (Cyanobacteria) that inhibit trypsin-like activity in planktonic herbivorous Daphnia (Cladocera). Environ Microbiol 8:77–87

    Article  CAS  Google Scholar 

  • De Stasio jun BT, Hill DK, Kleinhans JM, Nibbelink NP, Magnuson JJ (1996) Potential effects of global climate change on small north-temperate lakes: physics, fish, and plankton. Limnol Oceanogr 41:1136–1149

    Google Scholar 

  • DeLong EF (1992) Archaea in coastal marine environments. Proc Natl Acad Sci USA 89:5685–5689

    Article  CAS  Google Scholar 

  • Dokulil MT, Teubner K (2000) Cyanobacterial dominance in lakes. Hydrobiologia 438:1–12

    Article  CAS  Google Scholar 

  • Dziallas C, Grossart H-P (2011a) Temperature and biotic factors influence bacterial communities associated with Microcystis sp. (cyanobacteria). Environ Microbiol 13:1632–1641

    Article  Google Scholar 

  • Dziallas C, Grossart H-P (2011b) Increasing oxygen radicals and water temperature select for toxic Microcystis sp. PLoS ONE 6(9):e25569. doi:10.1371/journal.pone.0025569

    Article  CAS  Google Scholar 

  • Fastner J, Flieger I, Neumann U (1998) Optimised extraction of microcystins from field samples—a comparison of different solvents and procedures. Wat Res 32:3177–3181

    Article  CAS  Google Scholar 

  • Futuyama DJ (1983). Evolutionary interactions among herbivorous insects and plants. In: Futuyama DJ, Slatkin M (eds) Coevolution. Sinauer Associates Inc., Sunderland, pp 207–231

  • Ghadouani A, Pinel-Alloul B, Plath K, Codd GA, Lampert W (2004) Effects of Microcystis aeruginosa and purified microcystin-LR on the feeding behavior of Daphnia pulicaria. Limnol Oceanogr 49:666–679

    Article  Google Scholar 

  • Grossart H-P, Frindte K, Dziallas C, Eckert W, Tang KW (2011) Microbial methane production in oxygenated water column of an oligotrophic lake. Proc Natl Acad Sci USA 108:19657–19661

    Article  CAS  Google Scholar 

  • Gupta N, Pant SC, Vijayaraghavan R, Lakshmana Rao PV (2003) Comparative toxicity evaluation of cyanobacterial cyclic peptide toxin microcystin variants (LR, RR, YR) in mice. Toxicology 188:285–296

    Article  CAS  Google Scholar 

  • Ho L, Gaudieux A-L, Fannok S, Newcombe G, Humpage AR (2007) Bacterial degradation of microcystin toxins in drinking water eliminates their toxicity. Toxicon 50:438–441

    Article  CAS  Google Scholar 

  • Holliday IE (2011) Two-Way ANOVA (v1.0.3) in free statistics software (v1.1.23-r7), office for research development and education. http://www.wessa.net/Ian.Holliday/rwasp_Two%20Factor%20ANOVA.wasp/

  • Hudnell HK, Dortch Q (2008) A synopsis of research needs identified at the interagency, international symposium on cyanobacterial harmful algal blooms (ISOC-HAB). In: Hudnell HK (ed) Cyanobacterial harmful algal blooms—state of the science and research needs. Springer, New York

  • Ibelings BW, Mur LR (1992) Microprofiles of photosynthesis and oxygen concentration in Microcystis sp. Scums. FEMS Microbiol Ecol 86:195–203

    Article  CAS  Google Scholar 

  • Jähnichen S, Petzoldt T, Benndorf J (2001) Evidence for control of microcystin dynamics in Bautzen Reservoir (Germany) by cyanobacterial population growth rates and dissolved inorganic carbon. Arch Hydrobiol 150:177–196

    Google Scholar 

  • Jähnichen S, Long BM, Petzoldt T (2011) Microcystin production by Microcystis aeruginosa: direct regulation by multiple environmental factors. Harmful Algae. doi:10.1016/j.hal.2011.09.002

  • Kirkwood AE, Nalewajko C, Fulthorpe RR (2006) The effects of cyanobacterial exudates on bacterial growth and biodegradation of organic contaminants. Microb Ecol 51:4–12

    Article  CAS  Google Scholar 

  • Kühl M, Glud RN, Ploug H, Ramsing NB (1996) Microenvironmental control of photosynthesis and photosynthesis-coupled respiration in an epilithic cyanobacterial biofilm. J Phycol 32:799–812

    Article  Google Scholar 

  • Lawton L, Edwards C, Codd G (1994) Extraction and High-performance liquid chromatographic method for the determination of microcystins in raw and treated waters. Analyst 119:1525–1530

    Article  CAS  Google Scholar 

  • Logan BE, Grossart H-P, Simon M (1994) Direct observation of phytoplankton, TEP and aggregates on polycarbonate filters using brightfield microscopy. J Plankton Res 16:1811–1815

    Article  Google Scholar 

  • Manz W, Amann R, Ludwig W, Wagner M, Schleifer K-H (1992) Phylogenetic oligodeoxynucleotide probes for the major subclasses of proteobacteria: problems and solutions. System Appl Microbiol 15:593–600

    Article  Google Scholar 

  • Maruyama T, Kato K, Yokoyama A, Tanaka T, Hiraishi A, Park H-D (2003) Dynamics of microcystin-degrading bacteria in mucilage of Microcystis. Microb Ecol 46:279–288

    Article  CAS  Google Scholar 

  • Muyzer G, Dewaal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S ribosomal-RNA. Appl Environ Microbiol 59:695–700

    CAS  Google Scholar 

  • Nicolaus B, Panico A, Lama L, Romano I, Manca MC, De Guilio A, Gambacorta A (1999) Chemical composition and production of exopolysaccharides from representative members of heterocystous and nonheterocystous cyanobacteria. Phytochemistry 52:639–647

    Article  CAS  Google Scholar 

  • O′Brien HE, Miadlikowska J, Lutzoni F (2005) Assessing host specialization in symbiotic cyanobacteria associated with four closely related species of the lichen fungus Peltigera. Eur J Phycol 40:363–378

    Google Scholar 

  • Paerl HW (1996) Microscale physiological and ecological studies of aquatic cyanobacteria: macroscale implications. Microsc Res Techniq 33:47–72

    Article  CAS  Google Scholar 

  • Paerl HW, Huisman J (2008) Blooms like it hot. Science 320:57–58

    Article  CAS  Google Scholar 

  • Paerl HW, Millie DF (1996) Physiological ecology of toxic aquatic cyanobacteria. Phycologia 35:160–167

    Article  Google Scholar 

  • Paerl HW, Pinckney JL (1996) A mini-review of microbial consortia: their roles in aquatic production and biogeochemical cycling. Microb Ecol 31:225–247

    Article  Google Scholar 

  • Ploug H (2008) Cyanobacterial surface blooms formed by Aphanizomenon sp. and Nodularia spumigena in the Baltic Sea: small-scale fluxes, pH, and oxygen microenvironments. Limnol Oceanogr 53:914–921

    Article  CAS  Google Scholar 

  • Rantala A, Fewer DP, Hisbergues M, Rouhiainen L, Vaitomaa J, Börner T, Sivonen K (2004) Phylogenetic evidence for the early evolution of microcystin synthesis. Proc Natl Acad Sci USA 101:568–573

    Article  CAS  Google Scholar 

  • Rouco M, Lopez-Rodas V, Flores-Moya A, Costas E (2011) Evolutionary changes in growth rate and toxin production in the cyanobacterium Microcystis aeruginosa under a scenario of eutrophication and temperature increase. Environ Microbiol 62:265–273

    CAS  Google Scholar 

  • Salomon PS, Janson S, Graneli E (2003) Molecular identification of bacteria associated with filaments of Nodularia spumigena and their effect on the cyanobacterial growth. Harmful Algae 2:261–272

    Article  Google Scholar 

  • Sekar R, Pernthaler A, Pernthaler J, Warnecke F, Posch T, Amann R (2003) An improved protocol for quantification of freshwater Actinobacteria by flourescence in situ hybridization. Appl Environ Microbiol 69(5):2928–2935

    Article  CAS  Google Scholar 

  • Shapiro J (1990) Current Beliefs Regarding Dominance by Blue-Greens: The Case for the Importance of CO2 and pH. Verhandlungen IVTLAP 24:38–54

    Google Scholar 

  • Sukenik A, Eshkol R, Livne A, Hadas O, Rom M, Tchernov D, Vardi A, Kaplan A (2002) Inhibition of growth and photosynthesis of the dinoflagellate Peridinium gatunense by Microcystis sp. (cyanobacteria): a novel allelopathic mechanism. Limnol Oceanogr 47:1656–1663

    Article  Google Scholar 

  • Surono I, Collado M, Salminen S, Meriluoto J (2008) Effect of glucose and incubation temperature on metabolically active Lactobacillus plantarum from dadih in removing microcystin-LR. Food ChemToxicol 46:502–507

    Article  CAS  Google Scholar 

  • Teske A, Wawer C, Muyzer G, Ramsing NB (1996) Distribution of sulfate-reducing bacteria in a stratied fjord (Mariager Fjord, Denmark) as evaluated by most-probable-number counts and DGGE of PCR amplified ribosomal DNA fragments. Appl Environ Microbiol 62:1405–1415

    CAS  Google Scholar 

  • Welker M, Sejnohova L, Nemethova D, von Döhren H, Jarkovsky J, Marsalek B (2007) Seasonal Shifts in Chemotype Composition of Microcystis sp. Communities in the Pelagial and the Sediment of a Shallow Reservoir. Limnol Oceanogr 52:609–619

    Article  CAS  Google Scholar 

  • Wiedner C, Visser PM, Fastner J, Metcalf JS, Codd GA, Mur LR (2003) Effects of light on the Microcystin content of Microcystis strain PCC 7806. Appl Environ 69:1475–1481

    Article  CAS  Google Scholar 

  • Worm J, Sondergaard M (1998) Dynamics of heterotrophic bacteria attached to Microcystis spp. (Cyanobacteria). Aquat Microb Ecol 14:19–28

    Article  Google Scholar 

  • Zehnder A, Gorham P (1960) Factors influencing the growth of Microcystis aeruginosa Kütz. Emend. Elenkin. Can J Microbiol 6:645–660

    Article  CAS  Google Scholar 

  • Zhou J, Bruns M, Tiedje J (1996) DNA recovery from soils of diverse composition. Appl Environ Microbiol 62:695–724

    Google Scholar 

  • Zilliges I, Kehr JC, Meissner S, Ishida K, Mikkat S, Hagemann M, Kaplan A, Börner T, Dittmann E (2011) The cyanobacterial hepatotoxin microcystin binds to proteins and increases the fitness under oxidative stress conditions. PLoS One. doi:10.1371/journal.pone.0017615

Download references

Acknowledgments

We thank Solvig Pinnow for technical assistance and Andreas Ballot and Manfred Henning for providing us a variety of M. aeruginosa strains. We further acknowledge Helle Ploug for scientific input and technical help with the microelectrode measurements. We thank three anonymous reviewers for their very helpful suggestions and comments. This study was funded by the German Science Foundation (DFG, GR 1540/11-1,2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans-Peter Grossart.

Additional information

Communicated by U. Sommer.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 314 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dziallas, C., Grossart, HP. Microbial interactions with the cyanobacterium Microcystis aeruginosa and their dependence on temperature. Mar Biol 159, 2389–2398 (2012). https://doi.org/10.1007/s00227-012-1927-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-012-1927-4

Keywords

Navigation