Skip to main content

Advertisement

Log in

Multi-marker estimate of genetic connectivity of sole (Solea solea) in the North-East Atlantic Ocean

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

A thorough knowledge on the genetic connectivity of marine populations is important for fisheries management and conservation. Using a dense population sampling design and two types of neutral molecular markers (10 nuclear microsatellite loci and a mtDNA cytochrome b fragment), we inferred the genetic connectivity among the main known spawning grounds of sole (Solea solea L.) in the North-East Atlantic Ocean. The results revealed a clear genetic structure for sole in the North-East Atlantic Ocean with at least three different populations, namely the Kattegat/Skagerrak region, the North Sea and the Bay of Biscay, and with indications for a fourth population, namely the Irish/Celtic Sea. The lack of genetically meaningful differences between biological populations within the southern North Sea is likely due to a large effective population size and sufficient connection (gene flow) between populations. Nevertheless, an isolation-by-distance pattern was found based on microsatellite genotyping, while no such pattern was observed with the cytochrome b marker, indicating an historical pattern prevailing in the latter marker. Our results demonstrate the importance of a combined multi-marker approach to understand the connectivity among marine populations at region scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • André C, Larsson LC, Laikre L et al (2011) Detecting population structure in a high gene-flow species, Atlantic herring (Clupea harengus): direct, simultaneous evaluation of neutral vs putatively selected loci. Heredity 106:270–280

    Article  Google Scholar 

  • Antao T, Lopes A, Lopes RJ, Beja-Pereira A, Luikart G (2008) LOSITAN: a workbench to detect molecular adaptation based on a F ST-outlier method. BMC Bioinformatics 9:323

    Article  Google Scholar 

  • Bacevičius E, Karalius S (2008) A common sole (Solea solea Linnaeus, 1758): Actinopterygii: Pleuronectiformes: Soleidae) caught in the coastal zone of Lithuania. Acta Zoologica Lituanica 18:174–179

    Article  Google Scholar 

  • Beaumont MA, Nichols RA (1996) Evaluating loci for use in the genetic analysis of population structure. Proc R Soc B Biol Sci 263:1619–1626

    Article  Google Scholar 

  • Bekkevold D, Andre C, Dahlgren TG et al (2005) Environmental correlates of population differentiation in Atlantic herring. Evolution 59:2656–2668

    Google Scholar 

  • Belkhir K, Borsa P, Chikhi L, Raufaste N, Bonhomme F (2004) GENETIX 4.05, Logiciel Sous Windows Pour la Génétique Des Populations. Université de Montpellier II, Montpellier (France)

  • Borremans C (1987) North Sea spawning grounds of the sole (Solea solea) located from the 1984 Belgian plankton survey. In: Kullander SO, Fernholm B (eds) Proceedings of the V congress of european ichthyologists. Swedish Museum of Natural History, Stockholm, pp 187–191

    Google Scholar 

  • Borsa P, Blanquer A, Berrebi P (1997) Genetic structure of the flounders Platichthys flesus and P. stellatus at different geographic scales. Mar Biol 129:233–246

    Article  CAS  Google Scholar 

  • Buonaccorsi VP, McDowell JR, Graves JE (2001) Reconciling patterns of inter-ocean molecular variance from four classes of molecular markers in blue marlin (Makaira nigricans). Mol Ecol 10:1179–1196

    Article  CAS  Google Scholar 

  • Burt GJ, Millner RS (2008) Movement of sole in the southern North Sea and eastern English Channel from tagging studies (1955–2004). Science Series Technical, Report 144

    Google Scholar 

  • Cabral HN, Castro F, Linhares D, Alexandrino P (2003) Genetic differentiation of Solea solea (Linnaeus, 1758) and Solea senegalensis Kaup, 1858, (Pisces: Pleuronectiformes) from several estuarine systems of the Portuguese coast. Scientia Marina 67:43–52

    Article  Google Scholar 

  • Chao A, Shen T-J (2010) Program SPADE (Species prediction and diversity estimation). Program and user’s guide published at http://chao.stat.nthu.edu.tw

  • Chapuis MP, Estoup A (2007) Microsatellite null alleles and estimation of population differentiation. Mol Biol Evol 24:621–631

    Article  CAS  Google Scholar 

  • Charrier G, Coombs SH, McQuinn IH, Laroche J (2007) Genetic structure of whiting Merlangius merlangus in the northeast Atlantic and adjacent waters. Mar Ecol Prog Ser 330:201–211

    Article  Google Scholar 

  • Clarke KR (1993) Nonparametric multivariate analyses of changes in community structure. Aust J Ecol 18:117–143

    Article  Google Scholar 

  • Crawford NG (2010) SMOGD: software for the measurement of genetic diversity. Mol Ecol Resour 10:556–557

    Article  Google Scholar 

  • Cuveliers EL, Geffen AJ, Guelinckx J et al (2010) Microchemical variation in juvenile Solea solea otoliths as a powerful tool for studying connectivity in the North Sea. Mar Ecol Prog Ser 401:211–220

    Article  CAS  Google Scholar 

  • Cuveliers EL, Volckaert FAM, Rijnsdorp AD, Larmuseau MHD, Maes GE (2011) Temporal genetic stability and high effective population size despite fisheries-induced life-history trait evolution in the North Sea sole. Mol Ecol 20:3555–3568

    CAS  Google Scholar 

  • De Clerck R, Van de Velde J (1973) A study of the spawning and nursery areas of soles along the Belgian coast. In: ICES report of demersal fish committee

  • Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via Em Algorithm. J R Stat Soc B Methodol 39:1–38

    Google Scholar 

  • DeWoody JA, Avise JC (2000) Microsatellite variation in marine, freshwater and anadromous fishes compared with other animals. J Fish Biol 56:461–473

    Article  CAS  Google Scholar 

  • El Mousadik A, Petit RJ (1996) High level of genetic differentiation for allelic richness among populations of the argan tree [Argania spinosa (L) Skeels] endemic to Morocco. Theor Appl Genet 92:832–839

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  Google Scholar 

  • Exadactylos A, Geffen AJ, Thorpe JP (1998) Population structure of the Dover sole, Solea solea L., in a background of high gene flow. J Sea Res 40:117–129

    Article  Google Scholar 

  • Exadactylos A, Geffen AJ, Panagiotaki P, Thorpe JP (2003) Population structure of Dover sole Solea solea: RAPD and allozyme data indicate divergence in European stocks. Mar Ecol Prog Ser 246:253–264

    Article  CAS  Google Scholar 

  • Excoffier L, Laval G, Schneider S (2005) ARLEQUIN ver.3.0: an integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50

    CAS  Google Scholar 

  • Fogarty MJ, Botsford LW (2007) Population connectivity and spatial management of marine fisheries. Oceanography 20:112–123

    Article  Google Scholar 

  • Fonds M (1979) Laboratory observations on the influence of temperature and salinity on development of the eggs and growth of the larvae of Solea solea (Pisces). Mar Ecol Prog Ser 1:91–99

    Article  Google Scholar 

  • Funes V, Zuasti E, Catanese G, Infante C, Manchado M (2004) Isolation and characterization of ten microsatellite loci for Senegal sole (Solea senegalensis Kaup). Mol Ecol Notes 4:339–341

    Article  CAS  Google Scholar 

  • Garoia F, Marzola S, Guarniero I, Trentini M, Tinti F (2006) Isolation of polymorphic DNA microsatellites in the common sole Solea vulgaris. Mol Ecol Notes 6:144–146

    Article  CAS  Google Scholar 

  • Garoia F, Guarniero I, Grifoni D, Marzola S, Tinti F (2007) Comparative analysis of AFLPs and SSRs efficiency in resolving population genetic structure of Mediterranean Solea vulgaris. Mol Ecol 16:1377–1387

    Article  CAS  Google Scholar 

  • Goudet J (2001) FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3.)

  • Goudet J (2004) PCAGEN [Computer program]. Available from http://wwww2.unil.ch/popgen/softwares/pcagen.html

  • Grant WS, Waples RS (2000) Spatial and temporal scales of genetic variability in marine and anadromous species: implications for fisheries oceanography. In: Harrison PJ, Parson TR (eds) Fisheries oceanography: an integrative approach to fisheries oceanography. Blackwell Science, Oxford, pp 61–93

    Google Scholar 

  • Guarniero I, Franzellitti S, Ungaro N et al (2002) Control region haplotype variation in the central Mediterranean common sole indicates geographical isolation and population structuring in Italian stocks. J Fish Biol 60:1459–1474

    Article  Google Scholar 

  • Guinand B, Rolland JL, Bonhomme F (2008) Genetic structure of the common sole (Solea solea) in the Bay of Biscay: nurseries as units of selection? Estuar Coast Shelf Sci 78:316–326

    Article  Google Scholar 

  • Guo SW, Thompson EA (1992) Performing the exact test of Hardy-Weinberg proportion for multiple alleles. Biometrics 48:361–372

    Article  CAS  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Window 95/98/NT. Nucleid Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Hauser L, Carvalho GR (2008) Paradigm shifts in marine fisheries genetics: ugly hypotheses slain by beautiful facts. Fish Fish 9:333–362

    Google Scholar 

  • Hedgecock D, Barber PH, Edmands S (2007) Genetic approaches to measuring connectivity. Oceanography 20:70–79

    Article  Google Scholar 

  • Helyar SJ, Hemmer-Hansen J, Bekkevold D, Taylor MI, Ogden R, Limborg M, Cariani A, Maes GE, Diopere E, Carvalho GR, Nielsen EE (2011) Application of SNPs for population genetics of non-model organism: new opportunities and challenges. Mol Ecol Resour 11:123–136

    Article  Google Scholar 

  • Hemmer-Hansen J, Nielsen EE, Frydenberg J, Loeschcke V (2007a) Adaptive divergence in a high gene flow environment: Hsc70 variation in the European flounder (Platichthys flesus L.). Heredity 99:592–600

    Article  CAS  Google Scholar 

  • Hemmer-Hansen J, Nielsen EE, Gronkjaer P, Loeschcke V (2007b) Evolutionary mechanisms shaping the genetic population structure of marine fishes; lessons from the European flounder (Platichthys flesus L.). Mol Ecol 16:3104–3118

    Article  CAS  Google Scholar 

  • Hoarau G, Rijnsdorp AD, Van der Veer HW, Stam WT, Olsen JL (2002) Population structure of plaice (Pleuronectes platessa L.) in northern Europe: microsatellites revealed large-scale spatial and temporal homogeneity. Mol Ecol 11:1165–1176

    Article  CAS  Google Scholar 

  • Horwood J (2001) Population biology and ecology of the sole. Nat Resour Model 14:233–256

    Article  Google Scholar 

  • Hubisz MJ, Falush D, Stephens M, Pritchard JK (2009) Inferring weak population structure with the assistance of sample group information. Mol Ecol Resour 9:1322–1332

    Article  Google Scholar 

  • Iyengar A, Piyapattanakorn S, Stone DM et al (2000) Identification of microsatellite repeats in Turbot (Scophthalmus maximus) and Dover sole (Solea solea) using a RAPD-based technique: characterization of microsatellite markers in Dover sole. Mar Biotechnol 2:49–56

    CAS  Google Scholar 

  • Johannesson K, André C (2006) Life on the margin: genetic isolation and diversity loss in a peripheral marine ecosystem, the Baltic Sea. Mol Ecol 15:2013–2029

    Article  CAS  Google Scholar 

  • Jones GP, Srinivasan M, Almany GR (2007) Population connectivity and conservation of marine biodiversity. Oceanography 20:100–111

    Article  Google Scholar 

  • Jørgensen HBH, Hansen MM, Bekkevold D, Ruzzante DE, Loeschcke V (2005) Marine landscapes and population genetic structure of herring (Clupea harengus L.) in the Baltic Sea. Mol Ecol 14:3219–3234

    Article  Google Scholar 

  • Jost L (2008) G(ST) and its relatives do not measure differentiation. Mol Ecol 17:4015–4026

    Article  Google Scholar 

  • Knutsen H, Jorde PE, Andre C, Stenseth NC (2003) Fine-scaled geographical population structuring in a highly mobile marine species: the Atlantic cod. Mol Ecol 12:385–394

    Article  CAS  Google Scholar 

  • Knutsen H, André C, Jorde PE et al (2004) Transport of North Sea cod larvae into the Skagerrak coastal populations. Proc R Soc B Biol Sci 217:1337–1344

    Article  Google Scholar 

  • Knutsen H, Olsen EM, Jorde PE et al (2011) Are low but statistically significant levels of genetic differentiation in marine fishes ‘biologically meaningful’? A case study of coastal Atlantic cod. Mol Ecol 20:768–783

    Article  CAS  Google Scholar 

  • Kotoulas G, Bonhomme F, Borsa P (1995) Genetic structure of the common sole Solea vulgaris at different geographic scales. Mar Biol 122:361–375

    Article  Google Scholar 

  • Larmuseau MHD, Raeymaekers JAM, Ruddick KG, Van Houdt JKJ, Volckaert FAM (2009a) To see in different seas: spatial variation in the rhodopsin gene of the sand goby (Pomatoschistus minutus). Mol Ecol 18:4227–4239

    Article  CAS  Google Scholar 

  • Larmuseau MHD, Van Houdt JKJ, Guelinckx J, Hellemans B, Volckaert FAM (2009b) Distributional and demographic consequences of Pleistocene climate fluctuations for a marine demersal fish in the north-eastern Atlantic. J Biogeogr 36:1138–1151

    Article  Google Scholar 

  • Larmuseau MHD, Raeymaekers JAM, Hellemans B, Van Houdt JKJ, Volckaert FAM (2010a) Mito-nuclear discordance in the degree of population differentiation in a marine goby. Heredity 105:532–542

    Article  CAS  Google Scholar 

  • Larmuseau MHD, Vancampenhout K, Raeymaekers JAM, Van Houdt JKJ, Volckaert FAM (2010b) Differential modes of selection on the rhodopsin gene in coastal Baltic and North Sea populations of the sand goby, Pomatoschistus minutus. Mol Ecol 19:2256–2268

    Article  CAS  Google Scholar 

  • Larson RJ, Julian RM (1999) Spatial and temporal genetic patchiness in marine populations and their implications for fisheries management. CALCOFI Report 40:94–99

    Google Scholar 

  • Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452

    Article  CAS  Google Scholar 

  • Lukoschek V, Waycott M, Keogh JS (2008) Relative information content of polymorphic microsatellites and mitochondrial DNA for inferring dispersal and population genetic structure in the olive sea snake, Aipysurus laevis. Mol Ecol 17:3062–3077

    Article  CAS  Google Scholar 

  • Lundy CJ, Moran P, Rico C, Milner RS, Hewitt GM (1999) Macrogeographical population differentiation in oceanic environments: a case study of European hake (Merluccius merluccius), a commercially important fish. Mol Ecol 8:1889–1898

    Article  CAS  Google Scholar 

  • Mantel N (1967) The detection of disease clustering and a generalised regression approach. Cancer Res 27:209–220

    CAS  Google Scholar 

  • Nielsen EE, Hansen MM, Ruzzante DE, Meldrup D, Gronkjaer P (2003) Evidence of a hybrid-zone in Atlantic cod (Gadus morhua) in the Baltic and the Danish Belt Sea revealed by individual admixture analysis. Mol Ecol 12:1497–1508

    Article  Google Scholar 

  • Nielsen EE, Nielsen PH, Meldrup D, Hansen MM (2004) Genetic population structure of turbot (Scophthalmus maximus L.) supports the presence of multiple hybrid zones for marine fishes in the transition zone between the Baltic Sea and the North Sea. Mol Ecol 13:585–595

    Article  Google Scholar 

  • Nielsen EE, Hemmer-Hansen J, Larsen PF, Bekkevold D (2009) Population genomics of marine fishes: identifying adaptive variation in space and time. Mol Ecol 18:3128–3150

    Article  Google Scholar 

  • O’Reilly PT, Canino MF, Bailey KM, Bentzen P (2004) Inverse relationship between FST and microsatellite polymorphism in the marine fish, walleye pollock (Theragra chalcogramma): implications for resolving weak population structure. Mol Ecol 13:1799–1814

    Article  Google Scholar 

  • Palsbøll PJ, Berube M, Allendorf FW (2007) Identification of management units using population genetic data. Trends Ecol Evol 22:11–16

    Article  Google Scholar 

  • Pampoulie C, Gysels ES, Maes GE et al (2004) Evidence for fine-scale genetic structure and estuarine colonisation in a potential high gene flow marine goby (Pomatoschistus minutus). Heredity 92:434–445

    Article  CAS  Google Scholar 

  • Piry S, Alapetite A, Cornuet JM et al (2004) GENECLASS2: a software for genetic assignment and first-generation migrant detection. J Hered 95:536–539

    Article  CAS  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  Google Scholar 

  • Pujolar JM, Maes GE, Volckaert FAM (2006) Genetic patchiness among recruits in the European eel Anguilla anguilla. Mar Ecol Prog Ser 307:209–217

    Article  Google Scholar 

  • Queller DC, Goodnight KF (1989) Estimating relatedness using genetic markers. Evolution 43:258–275

    Article  Google Scholar 

  • Rannala B, Mountain JL (1997) Detecting immigration by using multilocus genotypes. Proc Nat Acad Sci USA 94:9197–9201

    Article  CAS  Google Scholar 

  • Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249

    Google Scholar 

  • Reiss H, Hoarau G, Dickey-Collas M, Wolff WJ (2009) Genetic population structure of marine fish: mismatch between biological and fisheries management units. Fish Fish 10:361–395

    Google Scholar 

  • Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223–225

    Article  Google Scholar 

  • Rijnsdorp AD, Vingerhoed B (1994) The ecological significance of geographical and seasonal differences in egg size in sole Solea solea (L.). Neth J Sea Res 32:255–270

    Article  Google Scholar 

  • Rijnsdorp AD, van Beek FA, Flatman S et al (1992) Recruitment of sole stock, Solea solea (L) in the Northeast Atlantic. Neth J Sea Res 29:173–192

    Article  Google Scholar 

  • Rodhe J (1996) On the dynamics of the large-scale circulation of the Skagerrak. J Sea Res 35:9–21

    Article  Google Scholar 

  • Rolland JL, Bonhomme F, Lagardere F, Hassan M, Guinand B (2007) Population structure of the common sole (Solea solea) in the Northeastern Atlantic and the Mediterranean Sea: revisiting the divide with EPIC markers. Mar Biol 151:327–341

    Article  Google Scholar 

  • Rosenberg NA (2004) DISTRUCT: a program for the graphical display of population structure. Mol Ecol Notes 4:137–138

    Article  Google Scholar 

  • Rousset F (1997) Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145:1219–1228

    CAS  Google Scholar 

  • Savina M, Lacroix G, Ruddick K (2010) Modelling the transport of common sole larvae in the southern North Sea: influence of hydrodynamics and larval vertical movements. J Mar Syst 81:86–98

    Article  Google Scholar 

  • Selkoe KA, Watson JR, White C et al (2010) Taking the chaos out of genetic patchiness: seascape genetics reveals ecological and oceanographic drivers of genetic patterns in three temperate reef species. Mol Ecol 19:3708–3726

    Article  Google Scholar 

  • Slatkin M (1985) Gene flow in natural populations. Annu Rev Ecol Syst 16:393–430

    Article  Google Scholar 

  • Slatkin M (1987) Gene flow and the geographic structure of natural populations. Science 236:787–792

    Article  CAS  Google Scholar 

  • Stenseth NC, Jorde PE, Chan KS et al (2006) Ecological and genetic impact of Atlantic cod larval drift in the Skagerrak. Proc R Soc B Biol Sci 273:1085–1092

    Article  Google Scholar 

  • Symonds DJ, Rogers SI (1995) The influence of spawning and nursery grounds on the distribution of sole Solea solea (L) in the Irish Sea, Bristol Channel and adjacent areas. J Exp Mar Biol Ecol 190:243–261

    Article  Google Scholar 

  • Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial-DNA in humans and chimpanzees. Mol Biol Evol 10:512–526

    CAS  Google Scholar 

  • van Oosterhout C, Weetman D, Hutchinson WF (2006) Estimation and adjustment of microsatellite null alleles in nonequilibrium populations. Mol Ecol Notes 6:255–256

    Article  Google Scholar 

  • Waples RS (1998) Separating the wheat from the chaff: patterns of genetic differentiation in high gene flow species. J Hered 89:438–450

    Article  Google Scholar 

  • Was A, Gosling E, Hoarau G (2010) Microsatellite analysis of plaice (Pleuronectes platessa L.) in the NE Atlantic: weak genetic structuring in a milieu of high gene flow. Mar Biol 157:447–462

    Article  CAS  Google Scholar 

  • Watts PC, Nash RDM, Kemp SJ (2004) Genetic structure of juvenile plaice Pleuronectes platessa on nursery grounds within the Irish Sea. J Sea Res 51:191–197

    Article  CAS  Google Scholar 

  • Wegner G, Damm U, Purps M (2003) Physical influences on the stock dynamics of plaice and sole in the North Sea. Scientia Marina 67:219–234

    Article  Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    Article  Google Scholar 

  • Whitlock MC, McCauley DE (1999) Indirect measures of gene flow and migration: F ST not equal 1/(4Nm + 1). Heredity 82:117–125

    Article  Google Scholar 

  • Witthames PR, Walker MG, Dinis MT, Whiting CL (1995) The geographical variation in the potential annual fecundity of Dover sole Solea solea (L) from European shelf waters during 1991. Neth J Sea Res 34:45–58

    Article  Google Scholar 

Download references

Acknowledgments

This study was part of the WESTBANKS project funded by the Belgian Science Policy (BELSPO; contract no. SD/BN/01A). We thank all scientists and fishermen who contributed to the collection of samples: E. Nielsen and colleagues (DTU-AQUA), M.L. Bégout and K. Mahé (Ifremer), L. Bolle (IMARES), H. van der Veer (NIOZ); U. Damm and N. Rohlf (ISH-BFAFI), ILVO-Fisheries, the crew of RV Zeeleeuw and RV Belgica, E. Diopere, K. Vancampenhout, S. Geldof and J. Guelinckx (K.U.Leuven). We also thank the Editor and two anonymous referees for their useful corrections and comments on an earlier version of this manuscript. E.C. acknowledged a grant of the Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT-Vlaanderen). M.H.D.L. and G.E.M. are postdoctoral researchers funded by the Fund for Scientific Research (FWO Vlaanderen).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. H. D. Larmuseau.

Additional information

Communicated by T. Reusch.

E. L. Cuveliers, M. H. D. Larmuseau contributed equally to this study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 313 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cuveliers, E.L., Larmuseau, M.H.D., Hellemans, B. et al. Multi-marker estimate of genetic connectivity of sole (Solea solea) in the North-East Atlantic Ocean. Mar Biol 159, 1239–1253 (2012). https://doi.org/10.1007/s00227-012-1905-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-012-1905-x

Keywords

Navigation