Skip to main content

Advertisement

Log in

Spatial patterns and environmental correlates in leaf-associated epifaunal assemblages of temperate seagrass (Zostera marina) meadows

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

We estimated and tested variability of seagrass leaf-associated epifaunal assemblages at a range of scales. Sampling was performed in 36 seagrass (Zostera marina) meadows within three regions along the Swedish west coast following a hierarchical design (samples separated by 10 s m, km or 100 km). Results showed strongest variability (43–81%) at the intermediate amongst-meadow (km) scale using biomass of functional categories, while considering taxa composition the within-meadow (10 s m) scale contributed most to variability (60%). Using functional categories, we found that embayment exposure and seagrass shoot density were the most important predictor variables explaining part of the variability in biomass of suspension feeders (bivalves and barnacles) and grazers. In contrast, variability in epifaunal taxa composition was predicted mainly by sediment chemistry, substratum coverage and geographical positioning. Our findings suggest that models to develop predictive power and mechanistic understanding should focus on variables and processes varying at small and intermediate scales rather than those varying at larger scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alcoverro T, Duarte CM, Romero J (1997) The influence of herbivores on Posidonia oceanica epiphytes. Aquat Bot 56:93–104

    Article  Google Scholar 

  • Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecol 26:32–46

    Google Scholar 

  • Anderson MJ, Willis TJ (2003) Canonical analysis of principal coordinates: a useful method of constrained ordination for ecology. Ecology 84:511–525

    Article  Google Scholar 

  • Baden SP (1990) The cryptofauna of Zostera marina (L.): abundance, biomass and population dynamics. Neth J Sea Res 27:81–92

    Article  Google Scholar 

  • Baden SP, Boström C (2001) The leaf canopy of seagrass beds: faunal community structure and function in a salinity gradient along the Swedish coast. In: Reise K (ed) Ecological comparisons of sedimentary shores. Ecological studies 151. Springer, Berlin Heidelberg, pp 213–236

    Chapter  Google Scholar 

  • Baden SP, Pihl L (1984) Abundance, biomass and production of mobile epibenthic fauna in Zostera marina (L.) meadows, western Sweden. Ophelia 23:65–90

    Google Scholar 

  • Baden SP, Gullström M, Lundén B, Pihl L, Rosenberg R (2003) Vanishing seagrass (Zostera marinaL.) in Swedish coastal waters. Ambio 32:374–377

    Google Scholar 

  • Baden S, Boström C, Tobiasson S, Arponen H, Moksnes P-O (2010) Relative importance of trophic interactions and nutrient enrichment in seagrass ecosystems: a broad-scale field experiment in the Baltic–Skagerrak area. Limnol Oceanogr 55:1435–1448

    Article  CAS  Google Scholar 

  • Balata D, Nesti U, Piazzi L, Cinelli F (2007) Patterns of spatial variability of seagrass epiphytes in the north-west Mediterranean Sea. Mar Biol 151:2025–22035

    Article  Google Scholar 

  • Borowitzka MA, Lethbridge RC (1989) Seagrass epiphytes. In: Larkum AWD, McComb AJ, Shepherd SA (eds) Biology of seagrasses–a treatise on the biology of seagrasses with special reference to the Australian region. Elsevier, Amsterdam, pp 458–499

    Google Scholar 

  • Borowitzka MA, Lethbridge RC, Charlton L (1990) Species richness, spatial distribution and colonisation pattern of algal and invertebrate epiphytes on the seagrass Amphibolis griffithii. Mar Ecol Prog Ser 64:281–291

    Article  Google Scholar 

  • Borum J (1985) Development of epiphytic communities on eelgrass (Zostera marina) along a nutrient gradient in a Danish estuary. Mar Biol 87:211–218

    Article  Google Scholar 

  • Borum J, Duarte CM, Krause-Jensen D, Greve TM (2004) European seagrasses: an introduction to monitoring and management. EU project monitoring and managing of European seagrasses

  • Bray JR, Curtis JT (1957) An ordination of the upland forest communities of Southern Wisconsin. Ecol Monogr 27:325–349

    Article  Google Scholar 

  • Cambridge ML, McComb AJ (1984) The loss of seagrasses in Cockburn Sound, Western Australia. 1. The time course and magnitude of seagrass decline in relation to industrial development. Aquat Bot 20:229–243

    Article  Google Scholar 

  • Duarte CM, Chiscano CL (1999) Seagrass biomass and production: a reassessment. Aquat Bot 65:159–174

    Article  Google Scholar 

  • Duffy JE, Harvilicz AM (2001) Species-specific impacts of grazing amphipods in an eelgrass-bed community. Mar Ecol Prog Ser 223:201–211

    Article  Google Scholar 

  • Eckman JE (1983) Hydrodynamic processes affecting benthic recruitment. Limnol Oceanogr 28:241–257

    Article  Google Scholar 

  • Eckman JE (1987) The role of hydrodynamics in recruitment, growth, and survival of Argopecten irradians (L.) and Anomia simplex (D’Orbigny) within eelgrass meadows. J Exp Mar Biol Ecol 106:165–191

    Article  Google Scholar 

  • Edgar GJ (1990) Population regulation, population dynamics and competition amongst mobile epifauna associated with seagrass. J Exp Mar Biol Ecol 144:205–234

    Article  Google Scholar 

  • Fraschetti S, Terlizzi A, Benedetti-Cecchi L (2005) Patterns of distribution of marine assemblages from rocky shores: evidence of relevant scales of variation. Mar Ecol Prog Ser 296:13–29

    Article  Google Scholar 

  • Green EP, Short FT (2003) World atlas of seagrasses. University of California Press, Berkeley

    Google Scholar 

  • Håkanson L, Jansson M (1983) Principles of lake sedimentology. Springer, Berlin Heidelberg

    Book  Google Scholar 

  • Håkanson L, Peters RH (1995) Predictive limnology—methods for predictive modeling. SPB Academic Publishing

  • Hauxwell J, Cebrián J, Valiela I (2003) Eelgrass Zostera marina loss in temperate estuaries: relationship to land derived nitrogen loads and effect of light limitation imposed by algae. Mar Ecol Prog Ser 247:59–73

    Article  CAS  Google Scholar 

  • Hays CG (2005) Effect of nutrient availability, grazer assemblage and seagrass source population on the interaction between Thalassia testudinum (turtle grass) and its algal epiphytes. J Exp Mar Biol Ecol 314:53–68

    Google Scholar 

  • Heijs FML (1985) Some structural and functional aspects of the epiphytic component of four seagrass species (Cymodoceoideae) from Papua New Guinea. Aquat Bot 23:225–247

    Article  Google Scholar 

  • Hily C, Connan S, Raffin C, Wyllie-Echeverria S (2004) In vitro experimental assessment of the grazing pressure of two gastropods on Zostera marina L. epiphytic algae. Aquat Bot 78:183–195

    Article  Google Scholar 

  • Jephson T, Nyström P, Moksnes P-O, Baden S (2008) Trophic interactions in Zostera marina beds along the Swedish coast. Mar Ecol Prog Ser 369:63–76

    Article  Google Scholar 

  • Jernakoff P, Nielsen J (1998) Plant-animal associations in two species of seagrasses in Western Australia. Aquat Bot 60:359–376

    Article  Google Scholar 

  • Jernakoff P, Brearley A, Nielsen J (1996) Factors affecting grazer-epiphyte interactions in temperate seagrass meadows. Oceanogr Mar Biol Annu Rev 34:109–162

    Google Scholar 

  • Johannesson K (1989) The bare zone of the Swedish rocky shores: why is it there? Oikos 54:77–86

    Article  Google Scholar 

  • Johnson MP, Edwards M, Bunker F, Maggs CA (2005) Algal epiphytes of Zostera marina: variation in assemblage structure from individual leaves to regional scale. Aquat Bot 82:12–26

    Article  Google Scholar 

  • Kendrick GA, Burt JS (1997) Seasonal changes in epiphytic macro-algae assemblages between offshore exposed and inshore protected Posidonia sinuosa Cambridge et Kuo Seagrass meadows, Western Australia. Bot Mar 40:77–85

    Article  Google Scholar 

  • Kendrick GA, Hawkes MW (1988) The epiphyte Microcladia coulteri (Rhodophyta): changes in population structure with spatial and temporal variation in availability of host species. Mar Ecol Prog Ser 43:79–86

    Article  Google Scholar 

  • Kotliar NB, Wiens JA (1990) Multiple scales of patchiness and patch structure: a hierarchical framework for the study of heterogeneity. Oikos 59:253–260

    Article  Google Scholar 

  • Lavery PS, Vanderklift MA (2002) A comparison of spatial and temporal patterns in epiphytic macroalgal assemblages of the seagrasses Amphibolis griffithii and Posidonia coriacea. Mar Ecol Prog Ser 236:99–112

    Article  Google Scholar 

  • Levin SA (1992) The problem of pattern and scale in ecology. Ecology 73:1943–1967

    Article  Google Scholar 

  • Martínez-Crego B, Prado P, Alcoverro T, Romero J (2010) Composition of epiphytic leaf community of Posidonia oceanica as a tool for environmental biomonitoring. Estuar Coast Shelf Sci 67:199–208

    Article  Google Scholar 

  • McGlathery KJ (2001) Macroalgal blooms contribute to the decline of seagrass in nutrient-enriched coastal waters. J Phycol 37:453–456

    Article  Google Scholar 

  • Menge BA, Olsen AM (1990) Role of scale and environmental factors in regulation of community structure. Trends Ecol Evol 5:52–57

    Article  CAS  Google Scholar 

  • Moksnes P-O, Gullström M, Tryman K, Baden S (2008) Trophic cascades in a temperate seagrass community. Oikos 117:763–777

    Article  Google Scholar 

  • Neckles HA, Wetzel RL, Orth RJ (1993) Relative effects of nutrient enrichment and grazing epiphyte-macrophyte (Zostera marina L.) dynamics. Oecologia 93:285–295

    Article  Google Scholar 

  • Nelson TA (1997) Epiphyte-grazer interactions on Zostera marina (Anthophyta: Monocotyledones): effects of density on community function. J Phycol 33:743–752

    Article  Google Scholar 

  • Nyqvist A, André C, Gullström M, Pihl Baden S, Åberg P (2009) Dynamics of Seagrass Meadows on the Swedish Skagerrak Coast. Ambio 38:85–88

    Article  Google Scholar 

  • Orth RJ, van Montfrans J (1984) Epiphyte-seagrass relationships with an emphasis on the role of micrograzing: a review. Aquat Bot 18:43–69

    Article  Google Scholar 

  • Penhale PA (1977) Macrophyte-epiphyte biomass and productivity in an eelgrass (Zostera marina L.) community. J Exp Mar Biol Ecol 26:211–224

    Article  CAS  Google Scholar 

  • Philippart CJM (1995) Effect of periphyton grazing by Hydrobia ulvae on the growth of Zostera noltii on a tidal flat in the Dutch Wadden Sea. Mar Biol 122:431–437

    Article  Google Scholar 

  • Piazzi L, Balata D, Cinelli F, Benedetti-Cecchi L (2004) Patterns of spatial variability in epiphytes of Posidonia oceanica. Differences between a disturbed and two reference locations. Aquat Bot 79:345–356

    Article  Google Scholar 

  • Polis GA, Strong DR (1996) Food web complexity and community dynamics. Am Nat 147:813–846

    Article  Google Scholar 

  • Prado P, Alcoverro T, Martínez-Crego B, Vergés A, Pérez M, Romero J (2007) Macrograzers strongly influence patterns of epiphytic assemblages in seagrass meadows. J Exp Mar Biol Ecol 350:130–143

    Google Scholar 

  • Prairie Y (1996) Evaluating the predictive power of regression models. Can J Fish Aquat Sci 53:490–492

    Article  Google Scholar 

  • Russell BD, Connell SD (2005) A novel interaction between nutrients and grazers alters relative dominance of marine habitats. Mar Ecol Prog Ser 289:5–11

    Article  CAS  Google Scholar 

  • Sand-Jensen K (1977) Effect of epiphytes on eelgrass photosynthesis. Aquat Bot 3:55–63

    Article  CAS  Google Scholar 

  • Saunders JE, Attrill MJ, Shaw SM, Rowden AA (2003) Spatial variability in the epiphytic algal assemblages of Zostera marina seagrass beds. Mar Ecol Prog Ser 249:107–115

    Article  Google Scholar 

  • Short FT, Wyllie-Echeverria S (1996) Natural and human-induced disturbance of seagrasses. Environ Conserv 23:17–27

    Article  Google Scholar 

  • Silberstein K, Chiffings AW, McComb AJ (1986) The loss of seagrass in Cockburn Sound, Western Australia. 3. The effect of epiphytes on productivity of Posidonia australis Hook. F. Aquat Bot 24:355–371

    Article  Google Scholar 

  • Steneck RS, Dethier MN (1994) A functional group approach to the structure of algal-dominated communities. Oikos 69:476–498

    Article  Google Scholar 

  • Trautman DA, Borowitzka MA (1999) Distribution of the epiphytic organisms on Posidonia australis and P. sinuosa, two seagrasses with differing leaf morphology. Mar Ecol Prog Ser 179:215–229

    Article  Google Scholar 

  • Turner MG, Gardner RH, O′Neill RV (2001) Landscape ecology in theory and practice: pattern and process. Springer, NY

    Google Scholar 

  • Underwood AJ (1997) Experiments in ecology—their logical design and interpretation using analysis of variance. Cambridge University Press, Cambridge

    Google Scholar 

  • van Montfrans J, Wetzel RL, Orth RJ (1984) Epiphyte-grazer relationships in seagrass meadows: consequences for seagrass growth and production. Estuaries 7:289–309

    Article  Google Scholar 

  • Vanderklift MA, Lavery PS (2000) Patchiness in assemblages of epiphytic macroalgae on Posidonia coriacea at a hierarchy of spatial scales. Mar Ecol Prog Ser 192:127–135

    Article  Google Scholar 

  • Walker DI, McComb AJ (1992) Seagrass degradation in Australian coastal waters. Mar Pollut Bull 25:191–195

    Article  Google Scholar 

  • Waycott M, Duarte CM, Carruthersc TJB, Orth RJ, Dennison WC, Olyarnike S, Calladine A, Fourqurean JW, KLJr Heck, Hughes AR, Kendrick GA, Kenworthy WJ, Short FT, Williams SL (2009) Accelerating loss of seagrasses across the globe threatens coastal ecosystems. PNAS 106:12377–12381

    Article  CAS  Google Scholar 

  • Wear DJ, Sullivan MJ, Moore AD, Millie DF (1999) Effects of water-column enrichment on the production dynamics of three seagrass species and their epiphytic algae. Mar Ecol Prog Ser 179:201–213

    Article  Google Scholar 

  • Weinberg JR, Caswell H, Whitlatch RB (1986) Demographic importance of ecological interactions: how much do statistics tell us? Mar Biol 93:305–310

    Article  Google Scholar 

  • Young EB, Lavery PS, van Elven B, Dring MJ, Berges JA (2005) Nitrate reductase activity in macroalgae and its vertical distribution in macroalgal epiphytes of seagrasses. Mar Ecol Prog Ser 288:103–114

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We wish to thank Maria Bodin, Bo Gustafsson and Anna Scherer for great support during the field period and also Maria Asplund, Elisa Alonso Aller, Maria Bodin and Anna Scherer for assistance with the laboratory work. We are also grateful to Per G. Nilsson for statistical advice. Comments from Maria Asplund, Christoffer Boström, Glenn Hyndes and Per-Olav Moksnes greatly improved earlier versions of the manuscript. The study was financially supported by the County of Västra Götaland, World Wide Fund for Nature and the Bonus programme PREHAB (with funding from the European Community’s 7th Framework Programme—FP/2007-2013—under grant agreement no. 217246).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Gullström.

Additional information

Communicated by F. Bulleri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gullström, M., Baden, S. & Lindegarth, M. Spatial patterns and environmental correlates in leaf-associated epifaunal assemblages of temperate seagrass (Zostera marina) meadows. Mar Biol 159, 413–425 (2012). https://doi.org/10.1007/s00227-011-1819-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-011-1819-z

Keywords

Navigation