Skip to main content
Log in

Eurythoe complanata (Polychaeta: Amphinomidae), the ‘cosmopolitan’ fireworm, consists of at least three cryptic species

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Eurythoe complanata (Pallas 1766) has been considered a cosmopolitan species with a great morphological similarity across its geographic range. To elucidate whether E. complanata is actually a single species, genetic (cytochrome oxidase subunit I and allozymes) and morphological differences were compared among specimens from the Pacific, Caribbean, and South Atlantic Oceans. Large levels of COI divergence (10–22%) and diagnostic allozyme loci identified three cryptic species: one in the eastern Pacific and two in the Atlantic, with one being morphologically differentiated and found only in islands. COI sequences between Pacific and Atlantic lineages were much more divergent than those of other transisthmian invertebrates, indicating their split before the Panama Isthmus closure or a faster evolutionary rate of COI for this species. The existence of two Atlantic species may be a consequence of parapatric speciation followed by a secondary invasion or even a sympatric speciation in the Atlantic oceanic islands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anisimova M, Gascuel O (2006) Approximate likelihood ratio test for branches: a fast, accurate and powerful alternative. Syst Biol 55:539–552

    PubMed  Google Scholar 

  • Barroso R, Paiva PC (2007) Amphinomidae (Annelida: Polychaeta) from Rocas Atoll, Northeastern Brazil. Arq Mus Nac Rio de Jan 65:357–362

    Google Scholar 

  • Bastrop R, Blank M (2006) Multiple invasions—a polychaete genus enters the Baltic Sea. Biol Invasions 8:1195–1200

    Google Scholar 

  • Bhaud M (1972) Identification des larves d’Amphinomidae (Annélides Polychètes) recueillies près de Nosy-Bé (Madagascar) et problèmes biologiques connexes. Cah ORSTOM sér Océanogr 10:203–216

    Google Scholar 

  • Blank M, Laine AO, Jürss K, Bastrop R (2007) Molecular identification key based on PCR/RFLP for three polychaete sibling species of the genus Marenzelleria, and the species’ current distribution in the Baltic Sea. Helgol Mar Res 62:129–141

    Google Scholar 

  • Boury-Esnault N, Klautau M, Bezac C, Wulff J, Solé-Cava AM (1999) Comparative study of putative conspecific sponge populations from both sides of the Isthmus of Panama. J Mar Biol Assoc UK 79:39–50

    Google Scholar 

  • Bowen BW, Bass AL, Muss A, Carlin JL, Robertson DR (2006) Phylogeography of two Atlantic squirrelfishes (Family Holocentridae): exploring links between pelagic larval duration and population connectivity. Mar Biol 149:899–913

    Google Scholar 

  • Breton S, Dufresne F, Desrosiers G, Blier PU (2003) Population structure of two northern hemisphere polychaetes, Neanthes virens and Hediste diversicolor (Nereididae), with different life-history traits. Mar Biol 142:707–715

    CAS  Google Scholar 

  • Brown CW (1990) The significance of the South Atlantic Equatorial Countercurrent to the ecology of the green turtle breeding population of Ascension Island. J Herpetol 24:81–84

    Google Scholar 

  • Chamberlin RV (1919) The Annelida Polychaeta. Mem Mus Comp Zool Harv 48:1–514

    Google Scholar 

  • Coyne JA, Orr HA (2004) Speciation. Sinauer Associates, Sunderland

    Google Scholar 

  • Dawson MN (2005) Incipient speciation of Catostylus mosaicus (Scyphozoa, Rhizostomeae, Catostylidae), comparative phylogeography and biogeography in south-east Australia. J Biogeogr 32:515–533

    Google Scholar 

  • Day JH (1951) The polychaete fauna of South Africa. Part 1. The intertidal and estuarine Polychaeta of Natal and Moçambique. Ann Natal Mus 12:1–67

    Google Scholar 

  • Diniz-Filho JAF, Telles MPC, Bonatto SL, Eizirik E, Freitas TRO, de Marco P, Santos FR, Solé-Cava AM, Soares TN (2008) Mapping the evolutionary twilight zone: molecular markers, populations and geography. J Biogeogr 35:753–763

    Google Scholar 

  • Ebbs NK (1966) The coral-inhabiting polychaetes of the northern Florida reef tract. Part I. Aphroditidae, Polynoidae, Amphinomidae, Eunicidae and Lysaretidae. Bull Mar Sci 16:485–555

    Google Scholar 

  • Excoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50

    CAS  Google Scholar 

  • Farrapeira CMR, de Melo AVOM, Barbosa DF, da Silva KME (2007) Ship hull fouling in the Port of Recife, Pernambuco. Braz J Oceanogr 55:207–221

    Google Scholar 

  • Fauvel P (1914) Annélides polychètes non-pélagiques provenant des campagnes de l’Hirondelle et de la Iles Gambier Faune de l’Empire français. Office de la Recherche Scientifique Coloniale, Paris

    Google Scholar 

  • Fauvel P (1947) Annélides polychètes de Nouvelle-Caledonie et des Iles Gambier Faune de l’Empire français. Office de la Recherche Scientifique Coloniale, Paris

    Google Scholar 

  • Floeter SR, Rocha LA, Robertson DR, Joyeux JC, Smith-Vaniz WF, Wirtz P, Edwards AJ, Barreiros JP, Ferreira CEL, Gasparini JL, Brito A, Falcon JM, Bowen BW, Bernardi G (2008) Atlantic reef fish biogeography and evolution. J Biogeogr 35:22–47

    Google Scholar 

  • Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome C oxidase subunit I from metazoan invertebrates. Mol Mar Biol Biotech 3:194–299

    Google Scholar 

  • Glasby CJ (2005) Polychaete distribution patterns revisited: an historical explanation. Mar Ecol 26:235–245

    Google Scholar 

  • Grassle JP, Grassle JF (1976) Sibling species in the marine pollution indicator Capitella (polychaeta). Science 192:567–569

    CAS  PubMed  Google Scholar 

  • Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704

    PubMed  Google Scholar 

  • Hartman O (1940) Polychaetous Annelids. Part 2. Chrysopetalidae to Goniadidae. Allan Hancock Pac Exped 7:173–287

    Google Scholar 

  • Hartman O (1948) The marine annelids erected by Kinberg, with notes on some other types in the Swedish State Museum. Ark Zool 42A:1–137

    Google Scholar 

  • Hartman O (1954) Marine annelids from the northern Marshall Islands. Professional Papers of the US Geological Survey 260:619–644

    Google Scholar 

  • Hickerson MJ, Gilchrist MA, Takebayashi N (2003) Calibrating a molecular clock from phylogeographic data: moments and likelihood estimates. Evolution 57:2216–2225

    PubMed  Google Scholar 

  • Hillis DM, Moritz C, Mable BK (1996) Molecular systematics. Sinauer Associates, Sunderland

    Google Scholar 

  • Horst R (1912) Polychaeta errantia of the Siboga Expedition. Part I. Amphinomidae. Siboga Expeditie. Leyden 24:1–43

    Google Scholar 

  • Jolly MT, Viard F, Gentil F, Thiébaut E, Jollivet D (2006) Comparative phylogeography of two coastal polychaete tubeworms in the Northeast Atlantic supports shared history and vicariant events. Mol Ecol 15:1841–1855

    CAS  PubMed  Google Scholar 

  • Joly M, Jollivet D, Gentil F, Thiébaut E, Viard F (2005) Sharp genetic break between Atlantic and English Channel populations of the polychaete Pectinaria koreni, along the North coast of France. Heredity 94:23–32

    Google Scholar 

  • Kinberg JGH (1857) Nya slägter och arter af Annelider. Öfv, Svenska Vetensk. Akad Förh 14:11–14

    Google Scholar 

  • Kinberg JGH (1867) Annulata nova. Öfvers K VetenskAkad Förh 23:337–357

    Google Scholar 

  • Klautau M, Russo CAM, Lazoski C, Boury-Esnault N, Thorpe JP, Solé-Cava AM (1999) Does cosmopolitanism in morphologically simple species result from overconservative systematics? A case study using the marine sponge Chondrilla nucula. Evolution 53:1414–1422

    PubMed  Google Scholar 

  • Knowlton N (1993) Sibling species in the sea. Annu Rev Ecol Syst 24:189–216

    Google Scholar 

  • Knowlton N, Weigt LA (1998) New dates and new rates for divergence across the Isthmus of Panama. Proc Roy Soc Lond B 265:2257–2263

    Google Scholar 

  • Kruse I, Reise K (2003) Reproductive isolation between intertidal and subtidal Scoloplos armiger (Polychaeta, Orbiniidae) indicates sibling species in the North Sea. Mar Biol 143:511–517

    Google Scholar 

  • Kudenov JD (1974) The reproductive biology of Eurythoe complanata (Pallas, 1766) (Polychaeta: Amphinomidae). PhD thesis, University of Arizona

  • Kudenov JD (1995) Family Amphinomidae Lamarck, 1818. In: Blake JA, Hilbig B, Scott PH (eds) Taxonomic atlas of the benthic fauna of the Santa Maria Basin and Western Santa Barbara Channel, vol 5: the Annelida. Part 2. Polychaeta: Phyllodocida (Syllidae and Scale-bearing Families), Amphinomida and Eunicida. Santa Barbara Museum of Natural History, Santa Barbara, pp 207–228

    Google Scholar 

  • Kumar S (1996) PHYLTEST: program for testing phylogenetic hypotheses version 2.0. Institute of Molecular and Evolutionary Genetics and Department of Biology, Pennsylvania State University, University Park

    Google Scholar 

  • Lazoski C, Solé-Cava AM, Boury-Esnault N, Klautau M, Russo CAM (2001) Cryptic speciation in a high gene flow scenario in the oviparous marine sponge Chondrosia reniformis Nardo, 1847. Mar Biol 139:421–429

    CAS  Google Scholar 

  • Lessios HA (2008) The great American schism: divergence of marine organisms after the rise of the Central American isthmus. Annu Rev Ecol Evol Syst 39:63–91

    Google Scholar 

  • Lessios HA, Kessing BD, Robertson BR (1998) Massive gene flow across the world’s most potent marine biogeographic barrier. Proc Roy Soc Lond B 265:583–588

    Google Scholar 

  • Lessios HA, Kane J, Robertson DR (2003) Phylogeography of the pantropical sea urchin Tripneustes: contrasting patterns of population structure between oceans. Evolution 57:2026–2036

    CAS  PubMed  Google Scholar 

  • Lima D, Freitas JE, Araujo ME, Solé-Cava AM (2005) Genetic detection of cryptic species in the frillfin goby Bathygobius soporator. J Exp Mar Biol Ecol 320:211–223

    Google Scholar 

  • Maltagliati F, Peru AP, Casu M, Rossi F, Lardicci C, Curini-Galletti M, Castelli A (2000) Is Syllis gracilis (Polychaeta: Syllidae) a species complex? An allozyme perspective. Mar Biol 136:871–879

    CAS  Google Scholar 

  • Maltagliati F, Casu M, Castelli A (2004) Morphological and genetic evidence supports the existence of two species in the genus Ophelia (Annelida, Polychaeta) from the Western Mediterranean. Biol J Linn Soc 83:101–113

    Google Scholar 

  • Manchenko GP (1994) Handbook of detection of enzymes on electrophoretic gels. CRC, Ann Arbor

    Google Scholar 

  • Manchenko GP, Radashevsky VI (2002) Genetic differences between two sibling sympatric Dipolydora species (Polychaeta: Spionidae) from the Sea of Japan, and a new species description. J Mar Biol Assoc UK 82:193–199

    Google Scholar 

  • Marko PB (2002) Fossil calibration of molecular clocks and the divergence times of geminate species pairs separated by the Isthmus of Panama. Mol Biol Evol 19:2005–2021

    CAS  PubMed  Google Scholar 

  • Marsden JR (1960) Polychaetous annelids from the shallow waters around Barbados and other islands of the West Indies, with notes on larval forms. Can J Zool 38:989–1020

    Google Scholar 

  • McCartney MA, Keller G, Lessios HA (2000) Dispersal barriers in tropical oceans and speciation in Atlantic and eastern Pacific sea urchins of the genus Echinometra. Mol Ecol 9:1391–1400

    CAS  PubMed  Google Scholar 

  • McIntosh WC (1885) Report on the Annelida Polychaeta collected by the H.M.S. Challenger during the years 1873–1876. Report on the scientific results of the voyage of H.M.S. Challenger during the years 1873–1876 under the command of the captain George S. Nares, R.N., F.R.S. and the late captain Frank Tourle Thomson, R.N. Zoology 12:1–554

  • Mendez N, Paez-Osuna F (1998) Trace metals in two populations of the fireworm Eurythoe complanata from Mazatlán Bay: effect of body size on concentrations. Environ Pollut 102:279–285

    CAS  Google Scholar 

  • Mileikovsky SA (1961) Assignment of two rostraria-type polychaete larvae from the plankton of the northwest Atlantic to species Amphinome pallasi Quatrefages, 1865 and Chloenea atlantica McIntosh, 1885 (Polychaeta, Errantia, Amphinomorpha). Dokl Biol Sci 141:1109–1112

    Google Scholar 

  • Miller MP (1997) Tools for population genetics analysis (TFPGA) 1.3: a windows program for the analysis of allozyme and molecular population genetics data. (http://www.marksgeneticsoftware.net/tfpga.htm)

  • Murphy RW, Sites JW, Buth DG, Haufler CH (1990) Proteins I: isozyme electrophoresis. In: Hillis DM, Moritz C (eds) Molecular systematics. Sinauer Associates, Sunderland, pp 45–126

    Google Scholar 

  • Nakamura T, Tachikawa Y, Kitamura M, Ohno O, Suganuma M, Daisuke Uemura D (2008) Complanine, an inflammation-inducing substance isolated from the marine fireworm Eurythoe complanata. Org Biomol Chem 6:2058–2060

    CAS  PubMed  Google Scholar 

  • Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583–590

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

    Google Scholar 

  • Nei M, Kumar S (2000) Molecular evolution and phylogenetics. Oxford University Press, New York

    Google Scholar 

  • Nóbrega R, Solé-Cava AM, Russo CAM (2004) High genetic homogeneity of an intertidal marine invertebrate along 8000 km of the Atlantic coast of the Americas. J Exp Mar Biol Ecol 303:173–181

    Google Scholar 

  • Nunez J, Brito MC, Ocana O (1991) Anélidos poliquetos de Canarias: familia Amphinomidae. Cah Biol Mar 32:469–476

    Google Scholar 

  • Nygren A, Eklöf J, Pleijel F (2009) Arctic-boreal sibling species of Paranaitis (Polychaeta, Phyllodocidae). Mar Biol Res 5:315–327

    Google Scholar 

  • Nylander JAA (2004) MrModeltest V2. Program distributed by the author. Evolutionary Biology Centre, Uppsala University, Uppsala

    Google Scholar 

  • O’Hara TD, Poore GCB (2000) Patterns of distribution for southern Australian marine echinoderms and decapods. J Biogeogr 27:1321–1335

    Google Scholar 

  • Osborn K, Rouse GW, Goffredi SK, Robison BH (2007) Description and relationships of Chaetopterus pugaporcinus, an unusual pelagic polychaete (Annelida, Chaetopteridae). Biol Bull 122:40–54

    Google Scholar 

  • Paiva PC (2006) Soft-bottom polychaetes of the Abrolhos Bank. In: Dutra GF, Allen GR, Werner T, McKenna SA (eds) A rapid marine biodiversity assessment of the Abrolhos Bank, Bahia, Brazil, vol 38. Conservation International, Washington DC, pp 87–90

    Google Scholar 

  • Pallas PS (1766) Miscellanea zoologica quibus novae imprimis atque obscurae Animalium species describuntur et observationibus iconibusque illustrantur. Petrum Van Cleef, Hagae Comitum

    Google Scholar 

  • Palumbi SR (1992) Marine speciation on a small planet. Trends Ecol Evol 7:114–118

    CAS  PubMed  Google Scholar 

  • Palumbi SR (1994) Genetic divergence, reproductive isolation, and marine speciation. Annu Rev Ecol Syst 25:547–572

    Google Scholar 

  • Pfenninger M, Schwenk K (2007) Cryptic animal species are homogeneously distributed among taxa and biogeographical regions. BMC Evol Biol 7:121

    PubMed  PubMed Central  Google Scholar 

  • Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818

    CAS  PubMed  Google Scholar 

  • Potts FA (1909) Polychaeta of the Indian Ocean. Pt. I. Amphinomidae. Trans Linn Soc Lond 12:355–371 (series 2)

    Google Scholar 

  • Ramos-Onsins SE, Rozas J (2002) Statistical properties of new neutrality tests against population growth. Mol Biol Evol 19:2092–2100

    CAS  PubMed  Google Scholar 

  • Rice SA, Karl S, Rice KA (2008) The Polydora cornuta complex (Annelida: Polychaeta) contains populations that are reproductively isolated and genetically distinct. Invert Biol 127:45–64

    Google Scholar 

  • Rocha L (2003) Patterns of distribution and processes of speciation in Brazilian reef fishes. J Biogeogr 30:1161–1171

    Google Scholar 

  • Rocha LA, Bowen BW (2008) Speciation in coral-reef fishes. J Fish Biol 72:1101–1121

    Google Scholar 

  • Rocha LA, Robertson DR, Roman J, Bowen BW (2005) Ecological speciation in tropical reef fishes. Proc Roy Soc Lond B 272:573–579

    Google Scholar 

  • Ronquist F, Huelsenbeck JP (2003) MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    CAS  PubMed  Google Scholar 

  • Rozas J, Sánchez-DelBarrio JC, Messenguer X, Rozas R (2003) DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19:2496–2497

    CAS  PubMed  Google Scholar 

  • Rundle HD, Nosil P (2005) Ecological speciation. Ecol Lett 8:336–352

    Google Scholar 

  • Sarver SK, Silberman JD, Walsh PJ (1998) Mitochondrial DNA sequence evidence supporting the recognition of two subspecies of the Florida spiny lobster Panulirus argus. J Crustac Biol 18:177–186

    Google Scholar 

  • Scaps P, Rouabah A, Leprêtre A (2000) Morphological and biochemical evidence that Perinereis cultrifera (Polychaeta: Nereididae) is a complex of species. J Mar Biol Assoc UK 80:735–736

    Google Scholar 

  • Schulze A (2006) Phylogeny and genetic diversity of palolo worms (Palola, Eunicidae) from the Tropical North Pacific and the Caribbean. Biol Bull 210:25–37

    CAS  PubMed  Google Scholar 

  • Schulze SR, Rice SA, Simon JL, Karl SA (2000) Evolution of poecilogony and the biogeography of North American populations of the polychaete Streblospio. Evolution 54:1247–1259

    CAS  PubMed  Google Scholar 

  • Sneath PHA, Sokal RR (1973) Principles of numerical taxonomy. Freeman, San Francisco

    Google Scholar 

  • Sokal RR, Rholf FJ (1995) Biometry. Freeman, New York

    Google Scholar 

  • Solé-Cava AM, Thorpe JP (1986) Genetic differentiation between morphotypes of the marine sponge Suberites ficus (Demospongiae, Hadromerida). Mar Biol 93:247–253

    Google Scholar 

  • Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595

    CAS  PubMed  PubMed Central  Google Scholar 

  • Takezaki N, Razhetsky A, Nei M (1995) Phylogenetic test of the molecular clock and linearized trees. Mol Biol Evol 12:823–833

    CAS  PubMed  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    CAS  PubMed  Google Scholar 

  • Thorpe JP, Solé-Cava AM (1994) The use of allozyme electrophoresis in invertebrate systematics. Zool Scr 23:3–18

    Google Scholar 

  • van Oppen MJH, Klerk H, Olsen JL, Stam WT (1996) Hidden diversity in marine algae: some examples of genetic variation below the species level. J Mar Biol Assoc UK 76:239–242

    Google Scholar 

  • Vázquez-Núñez R, Méndez N, Green-Ruíz C (2007) Bioaccumulation and elimination of Hg in the fireworm Eurythoe complanata (Annelida: Polychaeta) from Mazatlan, Mexico. Arch Environ Contam Toxicol 52:541–548

    PubMed  Google Scholar 

  • Westheide W, Schmidt H (2003) Cosmopolitan versus cryptic meiofaunal polychaete species: an approach to a molecular taxonomy. Helgol Mar Res 57:1–6

    Google Scholar 

  • Xia X, Xie Z (2001) DAMBE: software package for data analysis in molecular biology and evolution. J Hered 92:371–373

    CAS  PubMed  Google Scholar 

  • Xia X, Xie Z, Salemi M, Chen L, Wang Y (2003) An index of substitution saturation and its application. Mol Phylogenet Evol 26:1–7

    CAS  PubMed  Google Scholar 

  • Zigler KS, Lessios HA (2004) Speciation on the coasts of the new world: phylogeography and the evolution of bindin in the sea urchin genus Lytechinus. Evolution 58:1225–1241

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work resulted from the Masters Dissertation of RB at the National Museum of Federal University of Rio de Janeiro, with a fellowship of CNPq. Part of this work was done during a sabbatical year of PCP at the Smithsonian Tropical Research Institute (STRI), Panama, with a fellowship of CNPq. PCP is grateful to the STRI Staff, especially to Nancy Knowlton, for providing lab facilities, and Javier Jara for his intense collaboration in both field and lab work in Panama. The authors are thankful to Luiz Rocha (University of Hawaii) for collecting San Tomé (Africa) samples and to Andrew Cabrinovic and Emma Sherlock (The Natural History Museum) for the loan of specimens. The authors are thankful to the referees, for their very thorough and helpful comments. This work was supported by grants from National Science Foundation (NSF), USA and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenadoria de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), and Fundação Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro (FAPERJ), Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo C. Paiva.

Additional information

Communicated by J. P. Grassle.

Electronic supplementary material

Below is the link to the electronic supplementary material.

DOC 307 kb

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barroso, R., Klautau, M., Solé-Cava, A.M. et al. Eurythoe complanata (Polychaeta: Amphinomidae), the ‘cosmopolitan’ fireworm, consists of at least three cryptic species. Mar Biol 157, 69–80 (2010). https://doi.org/10.1007/s00227-009-1296-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-009-1296-9

Keywords

Navigation