Skip to main content
Log in

A tropical/subtropical biogeographic disjunction in southeastern Africa separates two Evolutionarily Significant Units of an estuarine prawn

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Recent phylogeographic research has indicated that biodiversity in the sea may be considerably greater than previously thought. However, the majority of phylogeographic studies on marine invertebrates have exclusively used a single locus (mitochondrial DNA), and it is questionable whether the phylogroups identified can be considered distinct species. We tested whether the mtDNA phylogroups of the southern African sandprawn Callianassa kraussi Stebbing (Decapoda: Thalassinidea) are also recovered using nuclear sequence data. Four mtDNA phylogroups were recovered that were each associated with one of South Africa’s four major biogeographic provinces. Three of these were poorly differentiated, but the fourth (tropical) group was highly distinct. The nuclear phylogeny recovered two major clades, one present in the tropical region and the other in the remainder of South Africa. Congruence between mitochondrial and nuclear DNA indicates that the species comprises two Evolutionarily Significant Units sensu Moritz (1994). In conjunction with physiological data from C. kraussi and morphological, ecological and physiological data from other species, this result supports the notion that at least some of the mtDNA phylogroups of coastal invertebrates whose distributions are limited by biogeographic disjunctions can indeed be considered to be cryptic species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Avise JC, Arnold J, Ball RM Jr, Bermingham E, Lamb T, Neigel JE, Reed CA, Saunders NC (1987) Intraspecific phylogeography: the mitochondrial DNA bridge between population genetics and systematics. Annu Rev Ecol Syst 18:489–522

    Article  Google Scholar 

  • Banks S, Piggott M, Williamson J, Bove U, Holbrook N, Beheregaray LB (2007) Oceanic variability and coastal topography shape local genetic structure in a long-dispersing marine invertebrate. Ecology 88:3055–3064. doi:https://doi.org/10.1890/07-0091.1

    Article  PubMed  Google Scholar 

  • Barber PH, Erdmann MV, Palumbi SR (2006) Comparative phylogeography of three codistributed stomatopods: origins and timing of regional lineage diversification in the coral triangle. Evolution 60:1825–1839

    Article  PubMed  Google Scholar 

  • Beheregaray LB (2008) Twenty years of phylogeography: the state of the field and the challenges for the Southern Hemisphere. Mol Ecol 17:3754–3774

    PubMed  Google Scholar 

  • Beheregaray LB, Caccone A (2007) Cryptic biodiversity in a changing world. J Biol 6:1–5. doi:https://doi.org/10.1186/jbiol60

    Article  Google Scholar 

  • Bolton JJ, Coppejans E, Anderson RJ, De Clerck O, Samyn Y, Leliaert F, Thandar AS (2001) Biodiversity of seaweeds and echinoderms in the western Indian Ocean: workshop report. S Afr J Sci 97:453–454

    Google Scholar 

  • Bolton JJ, Leliaert F, De Clerck O, Anderson RJ, Stegenga H, Engledow HE, Coppejans E (2004) Where is the western limit of the tropical Indian Ocean seaweed flora? An analysis of intertidal seaweed biogeography on the east coast of South Africa. Mar Biol 144:51–59. doi:https://doi.org/10.1007/s00227-003-1182-9

    Article  Google Scholar 

  • Bruton MN (1980) An outline of the ecology of the Mgobezeleni lake system at Sodwana, with emphasis on the mangrove community. In: Bruton MN, Cooper KH (eds) Studies in the ecology of Maputaland. Rhodes University and The Natal Branch of The Wildlife Society of Southern Africa, Durban, pp 408–426

    Google Scholar 

  • Cerff EC (1986) Salinity and temperature responses in Callianassa kraussi (Crustacea: Decapoda: Thalassinidea). M.Sc. thesis, University of Natal, Durban, South Africa

  • Clement M, Posada D, Crandall KA (2000) tcs: a computer program to estimate gene genealogies. Mol Ecol 9:1657–1660. doi:https://doi.org/10.1046/j.1365-294x.2000.01020.x

    Article  CAS  PubMed  Google Scholar 

  • Dawson MN, Jacobs DK (2001) Molecular evidence for cryptic species of Aurelia aurita (Cnidaria, Scyphozoa). Biol Bull 200:92–96. doi:https://doi.org/10.2307/1543089

    Article  CAS  PubMed  Google Scholar 

  • Day JH (1981) Fauna. In: Day JH (ed) Estuarine ecology with particular reference to southern Africa. Balkema, Cape Town, pp 147–178

    Google Scholar 

  • Diekmann U, Doebeli M, Metz JAJ, Tautz D (2004) Adaptive speciation. Cambridge University Press, Cambridge, UK

    Book  Google Scholar 

  • Dizon AE, Lockyer C, Perrin WF, Demasters DP, Sisson J (1992) Rethinking the stock concept: a phylogeographic approach. Conserv Biol 6:24–36. doi:https://doi.org/10.1046/j.1523-1739.1992.610024.x

    Article  Google Scholar 

  • Edkins MT, Teske PR, Papadopoulos I, Griffiths CL (2007) Morphological and genetic data suggest that southern African crown crabs, Hymenosoma orbiculare, represent five distinct species. Crustaceana 80:667–683. doi:https://doi.org/10.1163/156854007781360694

    Article  Google Scholar 

  • Evans BS, Sweijd NA, Bowie RCK, Cook PA, Elliott NG (2004) Population genetic structure of the perlemoen, Haliotis midae in South Africa: evidence of range expansion and founder events. Mar Ecol Prog Ser 270:163–172. doi:https://doi.org/10.3354/meps270163

    Article  Google Scholar 

  • Excoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.0: An integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50

    Article  CAS  Google Scholar 

  • Flemming BW, Hay ER (1988) Sediment distribution and dynamics on the Natal continental shelf. In: Schumann EH (ed) Coastal ocean studies off Natal, South Africa. Springer, New York

    Google Scholar 

  • Forbes AT (1973) An unusual abbreviated larval life in the estuarine burrowing prawn Callianassa kraussi (Crustacea:Decapoda:Thalassinidea). Mar Biol 22:361–365. doi:https://doi.org/10.1007/BF00391395

    Article  Google Scholar 

  • Forbes AT (1974) Osmotic and ionic regulation in Callianassa kraussi Stebbing (Crustacea: Decapoda: Thalassinidea). J Exp Mar Biol Ecol 16:301–311

    Article  CAS  Google Scholar 

  • Forbes AT (1978) Maintenance of non-breeding populations of the estuarine prawn Callianassa kraussi (Crustacea, Anomura, Thalassinidea). Zool Afr 13:33–40

    Article  Google Scholar 

  • Garrick RC, Dyer RJ, Beheregaray LB, Sunnucks P (2008) Babies and bathwater: a comment on the premature obituary for nested clade phylogeographical analysis. Mol Ecol 17:1401–1403. doi:https://doi.org/10.1111/j.1365-294X.2008.03675.x

    Article  CAS  PubMed  Google Scholar 

  • Gopal K, Tolley KA, Groeneveld JC, Matthee CA (2006) Mitochondrial DNA variation in spiny lobster Palinurus delagoae suggests genetically structured populations in the southwestern Indican Ocean. Mar Ecol Prog Ser 319:191–198. doi:https://doi.org/10.3354/meps319191

    Article  CAS  Google Scholar 

  • Hart MN (1980) An outline of the ecology of Lake Sibaya, with emphasis on the vertebrate communities. In: Bruton MN, Cooper KH (eds) Studies in the ecology of Maputaland. Rhodes University and The Natal Branch of The Wildlife Society of Southern Africa, Durban, pp 382–407

    Google Scholar 

  • Harrison TD (2004) Physiochemical characteristics of South African estuaries in relation to the zoogeography of the region. Estuar Coast Shelf Sci 61:73–87

    Article  CAS  Google Scholar 

  • Higgins D, Thompson J, Gibson T, Thompson JD, Higgins DG, Gibson TJ (1994) clustalw: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680. doi:https://doi.org/10.1093/nar/22.22.4673

    Article  PubMed  PubMed Central  Google Scholar 

  • Irwin DE (2002) Phylogeographic breaks without geographic barriers to gene flow. Evolution 56:2383–2394

    Article  PubMed  Google Scholar 

  • Jackson LF (1976) Aspects of the intertidal ecology of the east coast of South Africa. Invest Rep Oceangr Res Inst 46:1–72

    Google Scholar 

  • Jensen JL, Bohonak AJ, Kelley ST (2005) Isolation by distance, web service. BMC Genet 6:13. doi:https://doi.org/10.1186/1471-2156-6-13

    Article  PubMed  PubMed Central  Google Scholar 

  • Kuo C-H, Avise JC (2005) Phylogeographic breaks in low-dispersal species: the emergence of concordance across gene trees. Genetica 124:179–186. doi:https://doi.org/10.1007/s10709-005-2095-y

    Article  PubMed  Google Scholar 

  • Machordom A, Macpherson E (2004) Rapid radiation and cryptic speciation in squat lobsters of the genus Munida (Crustacea, Decapoda) and related genera in the South West Pacific: molecular and morphological evidence. Mol Phylogenet Evol 33:259–279. doi:https://doi.org/10.1016/j.ympev.2004.06.001

    Article  CAS  PubMed  Google Scholar 

  • Mantel N (1967) The detection of disease clustering and generalized regression approach. Cancer Res 27:209–220

    CAS  PubMed  Google Scholar 

  • Matthee CA, Cockcroft AC, Gopal K, von der Heyden S (2007) Mitochondrial DNA variation of the west-coast rock lobster, Jasus lalandii: marked genetic diversity differences among sampling sites. Mar Freshw Res 58:1130–1135. doi:https://doi.org/10.1071/MF07138

    Article  CAS  Google Scholar 

  • Moritz C (1994) Applications of mitochondrial DNA analysis in conservation: a critical review. Mol Ecol 3:401–411. doi:https://doi.org/10.1111/j.1365-294X.1994.tb00080.x

    Article  CAS  Google Scholar 

  • Morrison CL, Harvey AW, Lavery S, Tieu K, Huang Y, Cunningham CW (2002) Mitochondrial gene rearrangements confirm parallel evolution of the crab-like form. Proc R Soc Lond B Biol Sci 269:345–350. doi:https://doi.org/10.1098/rspb.2001.1886

    Article  CAS  Google Scholar 

  • Nicastro KR, Zardi GI, McQuaid CD, Teske PR, Barker NP (2008) Coastal topography drives genetic structure in marine mussels. Mar Ecol Prog Ser 368:189–195. doi:https://doi.org/10.3354/meps07607

    Article  CAS  Google Scholar 

  • Palumbi SR (1996) Nucleic acids II: the polymerase chain reaction. In: Hillis DM, Moritz C, Mable BK (eds) Molecular systematics. Sinauer Associates, Sunderland, pp 205–247

    Google Scholar 

  • Panchal M (2007) The automation of nested clade phylogeographic analysis. Bioinformatics 23:509–510. doi:https://doi.org/10.1093/bioinformatics/btl614

    Article  CAS  PubMed  Google Scholar 

  • Panchal M, Beaumont MA (2007) The automation and evaluation of nested clade phylogeographic analysis. Evolution 61:1466–1480. doi:https://doi.org/10.1111/j.1558-5646.2007.00124.x

    Article  PubMed  Google Scholar 

  • Porter ML, Perez-Losada M, Crandall KA (2005) Model-based multi-locus estimation of decapod phylogeny and divergente times. Mol Phylogenet Evol 37:355–369. doi:https://doi.org/10.1016/j.ympev.2005.06.021

    Article  CAS  PubMed  Google Scholar 

  • Posada D, Crandall KA, Templeton AR (2000) GeoDis: A program for the cladistic nested analysis of the geographical distribution of genetic haplotypes. Mol Ecol 9:487–488. doi:https://doi.org/10.1046/j.1365-294x.2000.00887.x

    Article  CAS  PubMed  Google Scholar 

  • Ridgway TM, Stewart BA, Branch GM, Hodgson AM (1998) Morphological and genetic differentiation of Patella granularis (Gastropoda: Patellidae) along the coast of South Africa. J Zool (Lond) 245:317–333. doi:https://doi.org/10.1111/j.1469-7998.1998.tb00107.x

    Article  Google Scholar 

  • Rocha LA, Robertson DS, Roman J, Bowen BW (2005) Ecological speciation in tropical reef fishes. Proc R Soc Lond B Biol Sci 272:573–579

    Article  Google Scholar 

  • Rundle HD, Nosil P (2005) Ecological speciation. Ecol Lett 8:336–352. doi:https://doi.org/10.1111/j.1461-0248.2004.00715.x

    Article  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Samraoui B, Weekers PHH, Dumont HJ (2003) Two taxa within the North African Lestes virens complex (Odonata, Zygoptera). Odonatologica 32:131–142

    Google Scholar 

  • Schumann EH (1988) Physical oceanography off Natal. In: Schuman EH, coastal ocean studies off Natal, South Africa. Lecture Notes on Coastal and Estuarine Studies vol 26, pp 1–271

    Google Scholar 

  • Sink KJ, Branch GM, Harris JM (2005) Biogeographic patterns in rocky intertidal communities in KwaZulu-Natal, South Africa. Afr J Mar Sci 27:81–96

    Article  Google Scholar 

  • Slatkin M (1995) A measure of population subdivision based on microsatellite allele frequencies. Genetics 139:457–462

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stefanni S, Thorley JL (2003) Mitochondrial DNA phylogeography reveals the existence of an evolutionarily significant unit of the sand goby Pomatoschistus minutus in the Adriatic (Eastern Mediterranean). Mol Phylogenet Evol 28:601–609. doi:https://doi.org/10.1016/S1055-7903(03)00054-X

    Article  CAS  PubMed  Google Scholar 

  • Stuckenberg BR (1969) Effective temperature as an ecological factor in southern Africa. Zool Afr 4:145–197

    Article  Google Scholar 

  • Tamura K, Nei M (1993) Estimations of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526

    CAS  PubMed  Google Scholar 

  • Tamura K, Nei M, Kumar S (2004) Prospects for inferring very large phylogenies by using the neighbour-joining method. Proc Natl Acad Sci USA 101:11030–11035. doi:https://doi.org/10.1073/pnas.0404206101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599. doi:https://doi.org/10.1093/molbev/msm092

    Article  CAS  PubMed  Google Scholar 

  • Templeton AR, Sing CF (1993) A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping. IV. Nested analyses with cladogram uncertainty and recombination. Genetics 134:659–669

    CAS  PubMed  PubMed Central  Google Scholar 

  • Templeton AR, Crandall KA, Sing CF (1992) A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. III. Cladogram estimation. Genetics 132:619–633

    CAS  PubMed  PubMed Central  Google Scholar 

  • Teske PR, McQuaid CD, Froneman PW, Barker NP (2006) Impacts of marine biogeographic boundaries on phylogeographic patterns of three South African estuarine crustaceans. Mar Ecol Prog Ser 314:283–293. doi:https://doi.org/10.3354/meps314283

    Article  Google Scholar 

  • Teske PR, Papadopulos I, Zardi GI, McQuaid CD, Griffiths CL, Edkins MT, Barker NP (2007a) Implications of life history for genetic structure and migration rates of five southern African coastal invertebrates: planktonic, abbreviated and direct development. Mar Biol 152:697–711. doi:https://doi.org/10.1007/s00227-007-0724-y

    Article  Google Scholar 

  • Teske PR, Froneman PW, McQuaid CD, Barker NP (2007b) Phylogeographic structure of the caridean shrimp Palaemon peringueyi in South Africa: further evidence for intraspecific genetic units associated with marine biogeographic provinces. Afr J Mar Sci 29:253–258. doi:https://doi.org/10.2989/AJMS.2007.29.2.9.192

    Article  Google Scholar 

  • Teske PR, McQuaid CD, Barker NP (2007c) Lack of genetic differentiation among four southeast African intertidal limpets (Siphonariidae): phenotypic plasticity in a single species? J Moll Stud 73:223–228. doi:https://doi.org/10.1093/mollus/eym012

    Article  Google Scholar 

  • Teske PR, Papadopoulos I, Newman BK, Dworschak PC, McQuaid CD, Barker NP (2008) Oceanic dispersal barriers, adaptation and larval retention: an interdisciplinary assessment of potential factors maintaining a phylogeographic break between sister lineages of an African prawn. BMC Evol Biol 8:341. doi:https://doi.org/10.1186/1471-2148-8-341

    Article  PubMed  PubMed Central  Google Scholar 

  • von der Heyden S, Prochazka K, Bowie RCK (2008) Significant population structure and asymmetric gene flow patterns amidst expanding populations of Clinus cottoides (Perciformes, Clinidae): application of molecular data to marine conservation planning in South Africa. Mol Ecol 17:4812–4826. doi:https://doi.org/10.1111/j.1365-294X.2008.03959.x

    Article  Google Scholar 

  • Vorsatz J (2000) Life history strategies of the estuarine sandprawn Callianassa kraussi. PhD thesis, University of Port Elizabeth

  • Walsh PS, Metzger DA, Higuchi R (1991) Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. Biotechniques 10:506–513

    CAS  PubMed  Google Scholar 

  • Weekers PHH, Gast RJ, Fuerst PA, Byers TJ (1994) Sequence variations in small-subunit ribosoma RNAs of Hartmanella vermiformis and their phylogenetic implications. Mol Biol Evol 11:684–690

    CAS  PubMed  Google Scholar 

  • York KL, Blacket MJ, Appleton BR (2008) The Bassian Isthmus and the major ocean currents of southeast Australia influence the phylogeography and population structure of a southern Australian intertidal barnacle Catomerus polymerus (Darwin). Mol Ecol 17:1948–1961. doi:https://doi.org/10.1111/j.1365-294X.2008.03735.x

    Article  CAS  PubMed  Google Scholar 

  • Zardi GI, McQuaid CD, Teske PR, Barker NP (2007) Unexpected population structure in indigenous (Perna perna) and invasive (Mytilus galloprovincialis) mussel populations in South Africa. Mar Ecol Prog Ser 337:135–144. doi:https://doi.org/10.3354/meps337135

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This is a contribution from the African Coelacanth Ecosystem Programme (ACEP). We are grateful to Brent Newman, Paul Cowley and Isabelle Papadopoulos for providing samples, to Joanne Palmer for generating COI sequences for the isolation-by-distance analysis and to George Branch for information concerning the distribution range of Callianassa kraussi. Three anonymous referees are thanked for comments that considerably improved the quality of this manuscript. This study was supported by postdoctoral research fellowships from the Claude Harris Leon Foundation and the NRF awarded to PRT, an overseas study grant from the Ernest Oppenheimer Memorial Trust awarded to PRT, the National Research Foundation (GUN 2069119 to NPB) and Rhodes University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. R. Teske.

Additional information

Communicated by C. L. Griffiths.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teske, P.R., Winker, H., McQuaid, C.D. et al. A tropical/subtropical biogeographic disjunction in southeastern Africa separates two Evolutionarily Significant Units of an estuarine prawn. Mar Biol 156, 1265–1275 (2009). https://doi.org/10.1007/s00227-009-1168-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-009-1168-3

Keywords

Navigation