Skip to main content
Log in

Species-specific defense strategies of vegetative versus reproductive blades of the Pacific kelps Lessonia nigrescens and Macrocystis integrifolia

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Chemical defense is assumed to be costly and therefore algae should allocate defense investments in a way to reduce costs and optimize their overall fitness. Thus, lifetime expectation of particular tissues and their contribution to the fitness of the alga may affect defense allocation. Two brown algae common to the SE Pacific coasts, Lessonia nigrescens Bory and Macrocystis integrifolia Bory, feature important ontogenetic differences in the development of reproductive structures; in L. nigrescens blade tissues pass from a vegetative stage to a reproductive stage, while in M. integrifolia reproductive and vegetative functions are spatially separated on different blades. We hypothesized that vegetative blades of L. nigrescens with important future functions are more (or equally) defended than reproductive blades, whereas in M. integrifolia defense should be mainly allocated to reproductive blades (sporophylls), which are considered to make a higher contribution to fitness. Herein, within-plant variation in susceptibility of reproductive and vegetative tissues to herbivory and in allocation of phlorotannins (phenolics) and N-compounds was compared. The results show that phlorotannin and N-concentrations were higher in reproductive blade tissues for both investigated algae. However, preferences by amphipod grazers (Parhyalella penai) for either tissue type differed between the two algal species. Fresh reproductive tissue of L. nigrescens was more consumed than vegetative tissue, while the reverse was found in M. integrifolia, thus confirming the original hypothesis. This suggests that future fitness function might indeed be a useful predictor of anti-herbivore defense in large, perennial kelps. Results from feeding assays with artificial pellets that were made with air-dried material and extract-treated Ulva powder indicated that defenses in live algae are probably not based on chemicals that can be extracted or remain intact after air-drying and grinding up algal tissues. Instead, anti-herbivore defense against amphipod mesograzers seems to depend on structural traits of living algae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Amsler CD, Fairhead VA (2006) Defensive and sensory chemical ecology of brown algae. Adv Bot Res 43:1–91. doi:10.1016/S0065-2296(05) 43001-3

    CAS  Google Scholar 

  • Arnold TM, Targett NM (2003) To grow and defend: lack of tradeoffs for brown algal phlorotannins. Oikos 100:406–408. doi:10.1034/j.1600-0706.2003.11680.x

    Article  Google Scholar 

  • Brawley SH, Johnson LE (1992) Gametogenesis, gametes and zygotes: an ecological perspective on sexual reproduction in the algae. Br Phycol J 27:233–252. doi:10.1080/00071619200650241

    Article  Google Scholar 

  • Brawley SH, Johnson LE, Pearson GA (1999) Gamete release at low tide in fucoid algae: maladaptive or advantageous? Am Zool 39:218–229

    Article  Google Scholar 

  • Buschmann A, Santelices B (1987) Micrograzers and spore release in Iridaea laminarioides Bory (Rhodophyta: Gigartinales). J Exp Mar Biol Ecol 108:171–179. doi:10.1016/S0022-0981(87) 80021-7

    Article  Google Scholar 

  • Carpenter RC (1986) Partitioning herbivory and its effects on coral reef algal communities. Ecol Monogr 56:345–363. doi:10.2307/1942551

    Article  Google Scholar 

  • Cronin G (2001) Resource allocation in seaweed and marine invertebrates: chemical defense patterns in relation to defense theories. In: McClintock JB, Baker BJ (eds) Marine chemical ecology. CRC Press, Boca Raton, pp 325–353

    Chapter  Google Scholar 

  • Cronin G, Hay ME (1996) Within-plant variation in seaweed palatability and chemical defenses: optimal defense theory versus the growth-differentiation balance hypothesis. Oecologia 105:361–368. doi:10.1007/BF00328739

    Article  Google Scholar 

  • Cruz-Rivera E, Hay ME (2000) Can quantity replace quality? Food choice, compensatory feeding, and fitness of marine mesograzers. Ecology 81:201–219

    Article  Google Scholar 

  • Cruz-Rivera E, Hay ME (2003) Prey nutritional quality interacts with chemical defenses to affect consumer feeding and fitness. Ecol Monogr 73:483–506. doi:10.1890/0012-9615(2003) 073[0483:PNQIWC]2.0.CO;2

    Article  Google Scholar 

  • Duffy JE, Hay ME (1990) Seaweed adaptation to herbivory. Bioscience 40:368–375. doi:10.2307/1311214

    Article  Google Scholar 

  • Duffy JE, Paul VJ (1992) Prey nutritional quality and effectiveness of chemical defenses against tropical reef fishes. Oecologia 90:333–339. doi:10.1007/BF00317689

    Article  CAS  Google Scholar 

  • Edding M, Fonck E, Macchiavello J (1994) Lessonia. In: Akatsuka I (ed) Biology of economic algae. Academic Publishing, The Hague Netherlands, pp 407–446

    Google Scholar 

  • Edgar GJ (ed) (2000) Australian marine life: the plants and animals of temperate waters. Reed New Holland, Sydney

    Google Scholar 

  • Fagerström T (1989) Anti-herbivore chemical defense in plants: a note on the concept of cost. Am Nat 133:281–287. doi:10.1086/284918

    Article  Google Scholar 

  • Fairhead VA, Amsler CD, McClintock JB, Baker BJ (2005a) Within-thallus variation in chemical and physical defenses in two species of ecologically dominant brown macroalgae from the Antarctic Peninsula. J Exp Mar Biol Ecol 322:1–12. doi:10.1016/j.jembe.2005.01.010

    Article  CAS  Google Scholar 

  • Fairhead VA, Amsler CD, McClintock JB, Baker BJ (2005b) Variation in phlorotannin content within two species of brown macroalgae (Desmarestia anceps and D. menziesii) from the Western Antarctic Peninsula. Polar Biol 28:680–686. doi:10.1007/s00300-005-0735-4

    Article  Google Scholar 

  • Gómez I, Orostegui M, Huovinen P (2007) Morpho-functional patterns of photosynthesis in the south Pacific kelp Lessonia nigrescens: Effects of UV radiation on 14C fixation and primary photochemical reactions. J Phycol 43:55–64. doi:10.1111/j.1529-8817.2006.00301.x

    Article  Google Scholar 

  • Harper MK, Bubni TS, Copp BR, James RD, Lindsay BS, Richardson AD et al (2001) Introduction to the chemical ecology of marine natural products. In: McClintock JB, Baker BJ (eds) Marine chemical ecology. CRC Press, Boca Raton, pp 3–69

    Google Scholar 

  • Hay ME, Fenical W (1988) Marine plant–herbivore interactions: the ecology of chemical defense. Annu Rev Ecol Syst 19:111–145. doi:10.1146/annurev.es.19.110188.000551

    Article  Google Scholar 

  • Herms DA, Mattson WJ (1992) The dilemma of plants: to grow or defend. Q Rev Biol 67:285–335. doi:10.1086/417659

    Article  Google Scholar 

  • Hoffmann A, Santelices B (eds) (1997) Flora marina de Chile central: marine flora at central Chile. Universidad Católica de Chile, Santiago

    Google Scholar 

  • Honkanen T, Jormalainen V, Hemmi A, Mäkinen A, Heikkilä N (2002) Feeding and growth of the isopod Idotea baltica on the brown alga Fucus vesiculosus: roles of inter-population and within-plant variation in plant quality. Ecoscience 9:332–338

    Article  Google Scholar 

  • Jormalainen V, Honkanen T (2008) Macroalgal chemical defenses and their roles in structuring temperate marine communities. In: Amsler CD (ed) Algal chemical ecology. Springer, Heidelberg, pp 57–89

    Chapter  Google Scholar 

  • Jormalainen V, Honkanen T, Koivikko R, Eränen J (2003) Induction of phlorotannin production in a brown alga: defense or resource dynamics? Oikos 103:640–650. doi:10.1034/j.1600-0706.2003.12635.x

    Article  CAS  Google Scholar 

  • Jormalainen V, Honkanen T, Vesakoski O, Koivikko R (2005) Polar extracts of the brown alga Fucus vesiculosus (L.) reduce assimilation efficiency but do not deter the herbivorous isopod Idotea baltica (Pallas). J Exp Mar Biol Ecol 317:143–157. doi:10.1016/j.jembe.2004.11.021

    Article  Google Scholar 

  • Koivikko R, Loponen J, Honkanen T, Jormalainen V (2005) Contents of soluble, cell-wall-bound and exuded phlorotannins in the brown alga Fucus vesiculosus, with implications on their ecological functions. J Chem Ecol 31:195–212. doi:10.1007/s10886-005-0984-2

    Article  CAS  Google Scholar 

  • Littler MM, Littler DS (1980) The evolution of thallus form and survival strategies in benthic marine macroalgae: field and laboratory tests of a functional form model. Am Nat 116:25–44. doi:10.1086/283610

    Article  Google Scholar 

  • Lubchenco J, Gaines SD (1981) A unified approach to marine plant-herbivore interactions. I. Populations and communities. Annu Rev Ecol Syst 12:405–437. doi:10.1146/annurev.es.12.110181.002201

    Article  Google Scholar 

  • Lüder UH, Clayton MN (2004) Induction of phlorotannins in the brown macroalga Ecklonia radiata (Laminariales, Phaeophyta) in response to simulated herbivory—the first microscopic study. Planta 218:928–937. doi:10.1007/s00425-003-1176-3

    Article  Google Scholar 

  • Macaya EC, Thiel M (2008) In situ tests on inducible defenses in Dictyota kunthii and Macrocystis integrifolia (Phaeophyceae) from the Chilean coast. J Exp Mar Biol Ecol 354:28–38. doi:10.1016/j.jembe.2007.10.005

    Article  Google Scholar 

  • Macaya EC, Rothäusler E, Thiel M, Molis M, Wahl M (2005) Induction of defenses and within-alga variation of palatability in two brown algae from the northern-central coast of Chile: effects of mesograzers and UV radiation. J Exp Mar Biol Ecol 325:214–227. doi:10.1016/j.jembe.2005.05.004

    Article  Google Scholar 

  • Martinez EA (1996) Micropopulation differentiation in phenol content and susceptibility to herbivory in the Chilean kelp Lessonia nigrescens (Phaeophyta, Laminariales). Hydrobiologia 326/327:205–211. doi:10.1007/BF00047808

    Article  CAS  Google Scholar 

  • Maschek JA, Baker BJ (2008) The chemistry of algal secondary metabolism. In: Amsler CD (ed) Algal chemical ecology. Springer, Heidelberg, pp 1–24

    Google Scholar 

  • Mattson WJ (1980) Herbivory in relation to plant nitrogen content. Annu Rev Ecol Syst 11:119–161. doi:10.1146/annurev.es.11.110180.001003

    Article  Google Scholar 

  • Medeiros HE, da Gama BAP, Gallerani G (2007) Antifouling activity of seaweed extracts from Guarujá, Sao Paulo, Brazil. Braz J Oceanogr 55:257–264. doi:10.1590/S1679-87592007000400003

    Article  Google Scholar 

  • Neushul M (1963) Studies on the giant kelp, Macrocystis. II. Reproduction. Am J Bot 50:354–359. doi:10.2307/2440152

    Article  Google Scholar 

  • Paul VJ, Fenical W (1986) Chemical defense in tropical green algae, order Caulerpales. Mar Ecol Prog Ser 34:157–169. doi:10.3354/meps034157

    Article  CAS  Google Scholar 

  • Pavia H, Toth GB (2008) Macroalgal models in testing and extending defense theories. In: Amsler CD (ed) Algal chemical ecology. Springer, Heidelberg, pp 147–172

    Chapter  Google Scholar 

  • Pavia H, Cervin G, Lindgren A, Aberg P (1997) Effects of UV-B radiation and simulated herbivory on phlorotannins in the brown alga Ascophyllum nodosum. Mar Ecol Prog Ser 157:139–146. doi:10.3354/meps157139

    Article  CAS  Google Scholar 

  • Pavia H, Toth GB, Aberg P (2002) Optimal defense theory: elasticity analysis as a tool to predict intraplant variation in defenses. Ecology 83:891–897

    Article  Google Scholar 

  • Peckol P, Krane JM, Yates JL (1996) Interactive effects of inducible defense and resource availability on phlorotannins in the North Atlantic brown alga Fucus vesiculosus. Mar Ecol Prog Ser 138:209–217. doi:10.3354/meps138209

    Article  CAS  Google Scholar 

  • Pérez-Schultheiss J, Crespo JE (2008) A new species of Parhyalella Kunkel, 1910 (Amphipoda, Talitroidea, Dogielinotidae) from the coast of Chile. Zootaxa 1724:61–68

    Google Scholar 

  • Peterson CH, Renaud PE (1989) Analysis of feeding preference experiments. Oecologia 80:82–86. doi:10.1007/BF00789935

    Article  CAS  Google Scholar 

  • Porter KG (1976) Enhancement of algal growth and productivity by grazing zooplankton. Science 192:1332–1334. doi:10.1126/science.192.4246.1332

    Article  CAS  Google Scholar 

  • Raven JA (2003) Long-distance transport in non-vascular plants. Plant Cell Environ 26:73–85. doi:10.1046/j.1365-3040.2003.00920.x

    Article  Google Scholar 

  • Reed D, Ebeling A, Anderson T, Anghera M (1996) Differential reproductive responses to fluctuating resources in two seaweeds with different reproductive strategies. Ecology 77:300–316. doi:10.2307/2265679

    Article  Google Scholar 

  • Rothäusler E, Thiel M (2006) Effect of detachment on the palatability of two kelp species. J Appl Phycol 18:423–435. doi:10.1007/s10811-006-9053-7

    Article  Google Scholar 

  • Rothäusler E, Macaya EC, Molis M, Wahl M, Thiel M (2005) Laboratory experiments examining inducible defense show variable responses of temperate brown and red macroalgae. Rev Chil Hist Nat 78:603–614

    Article  Google Scholar 

  • Santelices B, Ugarte R (1987) Algal life-history strategies and resistance to digestion. Mar Ecol Prog Ser 35:267–275. doi:10.3354/meps035267

    Article  Google Scholar 

  • Santelices B, Castilla JC, Cancino J, Schmiede P (1980) Comparative ecology of Lessonia nigrescens and Durvillaea antarctica (Phaeophyta) in Central Chile. Mar Biol (Berl) 59:119–132. doi:10.1007/BF00405461

    Article  Google Scholar 

  • Schoenwaelder MEA (2002) The occurrence and cellular significance of physodes in brown algae. Phycologia 41:125–139

    Article  Google Scholar 

  • Schoenwaelder MEA, Clayton MN (1999) The presence of phenolic compounds in isolated cell walls of brown algae. Phycologia 38:161–166

    Article  Google Scholar 

  • Shibata T, Kawaguchi S, Hama Y, Inagaki M, Yamaguchi K, Nakamura T (2004) Local and chemical distribution of phlorotannins in brown algae. J Appl Phycol 16:291–296. doi:10.1023/B:JAPH.0000047781.24993.0a

    Article  CAS  Google Scholar 

  • Steinberg PD (1984) Algal chemical defense against herbivores: allocation of phenolic compounds in the kelp Alaria marginata. Science 223:405–407. doi:10.1126/science.223.4634.405

    Article  CAS  Google Scholar 

  • Steinberg PD (1985) Feeding preferences of Tegula funebralis and chemical defenses of marine brown algae. Ecol Monogr 53:333–349. doi:10.2307/1942581

    Article  Google Scholar 

  • Steinberg PD, Van Altena IA (1992) Tolerance of marine invertebrate herbivores to brown algal phlorotannins in temperate Australasia. Ecol Monogr 62:189–222. doi:10.2307/2937093

    Article  Google Scholar 

  • Stekoll MS, Else PV (1990) Cultivation of Macrocystis integrifolia (Laminariales, Phaeophyta) in southeastern Alaskan waters. Hydrobiologia 204/205:445–451. doi:10.1007/BF00040269

    Article  Google Scholar 

  • Steneck RS, Watling LE (1982) Feeding capabilities and limitations of herbivorous molluscs: a functional group approach. Mar Biol (Berl) 68:299–319. doi:10.1007/BF00409596

    Article  Google Scholar 

  • Targett NM, Arnold TM (1998) Predicting the effects of brown algal phlorotannins on marine herbivores in tropical and temperate oceans. J Phycol 34:195–205. doi:10.1046/j.1529-8817.1998.340195.x

    Article  CAS  Google Scholar 

  • Targett NM, Arnold TM (2001) Effects of secondary metabolites on digestion in marine herbivores. In: McClintock JB, Baker BJ (eds) Marine chemical ecology. CRC Press, Boca Raton, pp 391–411

    Chapter  Google Scholar 

  • Taylor RB, Sotka E, Hay ME (2002) Tissue-specific induction of herbivore resistance: seaweed response to amphipod grazing. Oecologia 132:68–76. doi:10.1007/s00442-002-0944-2

    Article  Google Scholar 

  • Toth GB, Pavia H (2002a) Intraplant habitat and feeding preference of two gastropod herbivores inhabiting the kelp Laminaria hyperborea. J Mar Biol Assoc UK 82:1–5. doi:10.1017/S0025315402005416

    Article  Google Scholar 

  • Toth GB, Pavia H (2002b) Lack of phlorotannin induction in the kelp Laminaria hyperborea in response to grazing by two gastropod herbivores. Mar Biol (Berl) 140:403–409. doi:10.1007/s002270100707

    Article  Google Scholar 

  • Toth GB, Pavia H (2007) Induced herbivore resistance in seaweeds: a meta-analysis. J Ecol 95:425–434. doi:10.1111/j.1365-2745.2007.01224.x

    Article  Google Scholar 

  • Toth GB, Langhamer O, Pavia H (2005) Inducible and constitutive defences of valuable seaweed tissues: consequences for herbivore fitness. Ecology 86:612–618. doi:10.1890/04-0484

    Article  Google Scholar 

  • Tugwell S, Branch GM (1989) Differential polyphenolic distribution among tissues in the kelps Ecklonia maxima, Laminaria pallida and Macrocystis angustifolia in relation to plant-defense theory. J Exp Mar Biol Ecol 129:219–230. doi:10.1016/0022-0981(89) 90104-4

    Article  CAS  Google Scholar 

  • Tuomi J, Ilvessalo H, Niemelä P, Sirén S, Jormalainen V (1989) Within-plant variation in phenolic content and toughness of the brown alga Fucus vesiculosus L. Bot Mar 32:505–509

    Article  Google Scholar 

  • Van Alstyne KL (1995) Comparison of three methods for quantifying brown algal polyphenolic compounds. J Chem Ecol 21:45–58. doi:10.1007/BF02033661

    Article  Google Scholar 

  • Van Alstyne KL, Houser LT (2003) Dimethylsulfide release during macroinvertebrate grazing and its role as an activated chemical defense. Mar Ecol Prog Ser 250:175–181. doi:10.3354/meps250175

    Article  Google Scholar 

  • Van Alstyne KL, McCarthy JJ, Hustead CL, Kearns LJ (1999) Phlorotannin allocation among tissues of northeastern pacific kelps and rockweeds. J Phycol 35:483–492. doi:10.1046/j.1529-8817.1999.3530483.x

    Article  Google Scholar 

  • Van Alstyne KL, Wolfe GV, Freidenburg TL, Neill A, Hicken C (2001) Activated defense systems in marine macroalgae: evidence for an ecological role for DMSP cleavage. Mar Ecol Prog Ser 213:53–65. doi:10.3354/meps213053

    Article  Google Scholar 

  • Vinueza LR, Branch GM, Branch LM, Bustamente RH (2006) Top-down herbivory and bottom-up El Nino effects on Galapagos rocky-shore communities. Ecol Monogr 76:111–131. doi:10.1890/04-1957

    Article  Google Scholar 

  • Winter FC, Estes JA (1992) Experimental evidence for the effects of polyphenolic compounds from Dictyoneurum californicum (Phaeophyta; Laminariales) on feeding rate and growth in the red abalone (Haliotus rufescens). J Exp Mar Biol Ecol 155:263–277. doi:10.1016/0022-0981(92) 90067-K

    Article  CAS  Google Scholar 

  • Wotton RS (2004) The ubiquity and many roles of exopolymers (EPS) in aquatic systems. Sci Mar 68:13–21

    Article  CAS  Google Scholar 

  • Yates JL, Peckol P (1993) Effects of nutrient availability and herbivory on polyphenolics in the seaweed Fucus vesiculosus. Ecology 74:1757–1766. doi:10.2307/1939934

    Article  Google Scholar 

Download references

Acknowledgments

We are thankful to the leaders of the GAME project Mark Lenz and Martin Wahl. Fadia Tala made many helpful suggestions on a first draft of the manuscript. We would also like to thank Prof. Dr. Ulf Karsten and coworkers for the use of the laboratory at the University of Rostock, Germany. This project was financed by the Mercator Stiftung GmbH, and FONDECYT grants 1060127 (MT, IG) and 1060503 (IG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Thiel.

Additional information

Communicated by P. Kraufvelin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pansch, C., Gómez, I., Rothäusler, E. et al. Species-specific defense strategies of vegetative versus reproductive blades of the Pacific kelps Lessonia nigrescens and Macrocystis integrifolia . Mar Biol 155, 51–62 (2008). https://doi.org/10.1007/s00227-008-1006-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-008-1006-z

Keywords

Navigation