Skip to main content

Advertisement

Log in

Anguilliform fishes and sea kraits: neglected predators in coral-reef ecosystems

  • Research Article
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Despite intensive sampling efforts in coral reefs, densities and species richness of anguilliform fishes (eels) are difficult to quantify because these fishes evade classical sampling methods such as underwater visual census and rotenone poisoning. An alternative method revealed that in New Caledonia, eels are far more abundant and diverse than previously suspected. We analysed the stomach contents of two species of sea snakes that feed on eels (Laticauda laticaudata and L. saintgironsi). This technique is feasible because the snakes return to land to digest their prey, and (since they swallow their prey whole) undigested food items are identifiable. The snakes’ diet consisted almost entirely (99.6%) of eels and included 14 species previously unrecorded from the area. Very large populations of snakes occur in the study area (e.g. at least 1,500 individuals on a small coral islet). The snakes capture approximately 36,000 eels (972 kg) per year, suggesting that eels and snakes play key roles in the functioning of this reef ecosystem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Ackerman JL, Bellwood DR (2000) Reef fish assemblages: a re-evaluation using enclosed rotenone stations. MEPS 206:227–237

    Article  Google Scholar 

  • Bellwood DR, Hoey AS, Choat JH (2003) Limited functional redundancy in high diversity systems: resilience and ecosystem function on coral reefs. Ecol Lett 6:281–285

    Article  Google Scholar 

  • Bellwood DR, Hughes TP, Folke C, Nyström M (2004) Confronting the coral reef crisis. Nature 429:827–833

    Article  CAS  Google Scholar 

  • Bonnet X, Naulleau G (1996) Catchability in snakes: consequences on breeding frequency estimates. Can J Zool 74:233–239

    Article  Google Scholar 

  • Bonnet X, Pearson D, Ladyman M, Lourdais L, Bradshaw D (2002) “Heaven” for serpents? A mark-recapture study of tiger snakes (Notechis scutatus) on Carnac Island, Western Australia. Aust Ecol 27:442–450

    Article  Google Scholar 

  • Bonnet X, Ineich I, Shine R (2005) Terrestrial locomotion in sea snakes: effects of sex and species on cliff-climbing ability in sea kraits (Serpentes, Laticauda). Biol J Linnean Soc 85:433–441

    Article  Google Scholar 

  • Buckland ST, Anderson DR, Burhnam KP, Laake JL (1993) Distance sampling—estimating abundance of biological populations. Chapman and Hall, London

    Google Scholar 

  • Buckland ST, Anderson DR, Burnham KP, Laake JL, Borchers DL, Thomas L (2001) Introduction to distance sampling. Estimating abundance of biological populations. Oxford University Press, Oxford

    Google Scholar 

  • Carpenter SR, Kitchell JF, Hodgson JR (1985) Cascading trophic interactions and lake productivity: fish predation and herbivory can regulate lake ecosystems. Bioscience 35:634–639

    Article  Google Scholar 

  • Cogger H, Heatwole H (2005) Laticauda frontalis De Vis, 1905 and Laticauda sp. Nov. representing a new clade of sea kraits from the Republic of Vanuatu and New Caledonia (Serpentes: Elapidae: Laticaudinae). Records of the Australian Museum 57, (in press)

  • Finke DL, Denno RF (2004) Predator diversity dampens trophic cascades. Nature 429:407–410

    Article  CAS  Google Scholar 

  • Guinotte JM, Buddemeier RW, Kleypas JA (2003) Future coral reef habitat marginality: temporal and spatial effects of climate change in the Pacific basin. Coral Reefs 22:551–558

    Article  Google Scholar 

  • Harvey E, Fletcher D, Shortis M (2000) A comparison of the precision and accuracy of estimates of reef-fish lengths determined visually by divers with estimates produced by a stereo-video system. Fish Bull 99:63–71

    Google Scholar 

  • Heatwole H (1999) Sea snakes Australian Natural History Series. University of New South Wales

  • Heatwole H, Busack S, Cogger H (2005) Geographic variation in sea kraits of the Laticauda colubrina complex (Serpentes: Elapidae: Hydrophiinea: Laticaudini). Herpetol Monogr 19:1–136

    Article  Google Scholar 

  • Hughes TP (1994) Catastrophes, phase-shifts, and large-scale degradation of a Caribbean coral-reef. Science 265:1547–1551

    Article  CAS  Google Scholar 

  • Hughes TP, Baird AH, Bellwood DR, Card M, Connolly SR, Folke C, Grosberg R, Hoegh-Guldberg O, Jackson JBC, Kleypas J, Lough JM, Marshall P, Nyström M, Palumbi SR, Pandolfi JM, Rosen B, Roughgarden J (2003) Climate change, human impacts, and the resilience of coral reefs. Science 301:929–933

    Article  CAS  Google Scholar 

  • Ineich I, Laboute P (2002) Sea snakes of New Caledonia. IRD et Muséum national d’Histoire naturelle Editions, Collection Faune et flore tropicales, Paris

  • Jennings S, Polunin NVC (1995) Biased underwater visual census biomass estimates for target-species in tropical reef fisheries. J Fish Biol 47:733–736

    Article  Google Scholar 

  • Kulbicki M (1988) Correlation between catch data from bottom longlines and fish census in the south-west lagoon of New Caledonia. In: Proceedings of 6th international coral reef symposium, Townsville, vol 2, pp 305–312

  • Kulbicki M (1997) Bilan de 10 ans de recherche (1985–1995) par l’ORSTOM sur la structure des communautés des poissons lagonaires et récifaux en Nouvelle-Calédonie. Cybium 21:47–79

    Google Scholar 

  • Kulbicki M, Sarramégna S (1999) Adequacy of several density estimates obtained from underwater visual censuses: a case study of Chaetodontidae and Pomacanthidae. Aquat Living Resour 12:315–325

    Article  Google Scholar 

  • Kulbicki M, Wantiez L (1990) Comparison between fish bycatch from shrimp trawlnet and visual censuses in St. Vincent Bay, New Caledonia. Fish Bull 88:667–675

    Google Scholar 

  • Kulbicki M, Labrosse P, Letourneur Y (2000) Stock assessment of commercial fishes in the northern New Caledonian lagoon-2-lagoon bottom and near reef fishes. Aquat Living Resour 13:77–90

    Article  Google Scholar 

  • Kulbicki M, Guillemot N, Amand M (2005) A general approach to length-weight relationships for Pacific lagoon fishes. Cybium 29:235–252

    Google Scholar 

  • Letourneur Y, Kulbicki M, Labrosse P (2000) Commercial demersal fish stock assessment of the Northern New Caledonian Lagoon: 1-coral reef fish communities. Aquat Living Resour 13:65–76

    Article  Google Scholar 

  • Linden O (1999) Coral mortality in the tropics: massive causes and effects. Ambio 27:588

    Google Scholar 

  • McCann KS, Hasting A, Huxel GR (1998) Weak trophic interactions and the balance of nature. Nature 395:794–798

    Article  CAS  Google Scholar 

  • Otis DL, Burnham KP, Anderson DR (1978) Statistical inference for capture data on closed animal populations. Wildl Monogr 62:1–135

    Google Scholar 

  • Pandolfi JM, Bradbury RH, Sala E, Hughes TP, Bjorndal KA, Cooke RG, McArdle D, McClenachan L, Newman MJH, Paredes G, Warner RR, Jackson JBC (2003) Global trajectories of the long-term decline of coral reef ecosystems. Science 301:955–958

    Article  CAS  Google Scholar 

  • Pernetta JC (1977) Observations on the habits and morphology of the sea snake Laticauda colubrina (Schneider) in Fiji. Can J Zool 55:1612–1619

    Article  Google Scholar 

  • Reed RN, Shine R, Shetty S, Cogger H (2002) Sea kraits (Squamata: Laticauda spp.) as a useful bioassay for assessing local diversity of eels (Muraenidae, Congridae) in the western Pacific Ocean. Copeia 2002:1098–1101

    Article  Google Scholar 

  • Riegl B (2003) Climate change and coral reefs: different effects in two high-latitude areas (Arabian Gulf, South Africa). Coral Reefs 22:433–446

    Article  Google Scholar 

  • Roberts CM, McClean CJ, Veron JEN, Hawkins JP, Allen GR, McAllister DE, Mittermeier CG, Schueler FW, Spalding M, Wells F, Vynne C, Werner TB (2002) Marine biodiversity hotspots and conservation priorities for tropical reefs. Science 295:1280–1284

    Article  CAS  Google Scholar 

  • Rogers CS (1990) Responses to coral reefs and reef organisms to sedimentation. Mar Ecol Prog Ser 62:185–202

    Article  Google Scholar 

  • Saint Girons H (1964) Notes sur l’écologie et la structure des populations des Laticaudinae (Serpentes : Hydrophiidae) en Nouvelle-Calédonie. La Terre et la Vie 111:185–214

    Google Scholar 

  • Samoilys MA, Carlos G (2000) Determining methods of underwater visual census for estimating the abundance of coral reef fishes. Environ Biol Fish 57:289–304

    Article  Google Scholar 

  • Sheppard CRC (2003) Predicted recurrences of mass coral mortality in the Indian Ocean. Nature 425:294–297

    Article  CAS  Google Scholar 

  • Shetty S, Shine R (2002a) Philopatry and homing behavior of sea snakes (Laticauda colubrina) from two adjacent islands in Fiji. Cons Biol 16:1422–1426

    Article  Google Scholar 

  • Shetty S, Shine R (2002b) Sexual divergence in diets and morphology in Fijian sea snakes, Laticauda colubrina (Laticaudidae). Aust Ecol 27:77–84

    Article  Google Scholar 

  • Shetty S, Shine R (2002c) Activity patterns of yellow-lipped sea kraits (Laticauda colubrina) on a Fijian island. Copeia 2002:77–85

    Article  Google Scholar 

  • Shine R, Sun L (2003) Attack strategy of an ambush predator: which attributes of the prey trigger a pit-viper’s strike? Funct Ecol 17:340–348

    Article  Google Scholar 

  • Shine R, Reed RN, Shetty S, LeMaster M, Mason RT (2002) Reproductive isolating mechanisms between two sympatric sibling species of sea-snakes. Evolution 56:1655–1662

    Article  Google Scholar 

  • Walker DI, Ormond RFG (1982) Coral death from sewage and phosphate pollution at Aqaba, Red Sea. Mar Poll Bull 13:21–25

    Article  Google Scholar 

  • Willis TJ (2001) Visual census methods underestimate density and diversity of cryptic reef fishes. J Fish Biol 59:1408–1411

    Article  Google Scholar 

Download references

Acknowledgments

We warmly thank the Aquarium de Nouméa, the Direction des Ressources Naturelles de la Province Sud and the IRD de Nouméa for logistical support. We are especially grateful to F. DeRiberolles, F. Devinck, C. Goiran, J. Halatas, P. Leblanc and Sylvain. Rex Cambag organised field trips and helped to mettre la rouste à la coinche aux parigots. Funding was provided by the Programme pluri-formation “Biodiversité terrestre en Nouvelle-Calédonie”, Muséum National d’Histoire Naturelle and Ministère de la Recherche (XB and II) and the Australian Research Council (RS). The study was carried out under permit number 6024–1141/DRN/ENV.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Bonnet.

Additional information

Communicated by S.A. Poulet, Roscoff.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ineich, I., Bonnet, X., Brischoux, F. et al. Anguilliform fishes and sea kraits: neglected predators in coral-reef ecosystems. Mar Biol 151, 793–802 (2007). https://doi.org/10.1007/s00227-006-0527-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-006-0527-6

Keywords

Navigation