Skip to main content
Log in

Subcellular distribution of zinc and cadmium in the hepatopancreas and gills of the decapod crustacean Penaeus indicus

  • Research Article
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

The decapod crustacean Penaeus indicus accumulated Cd and Zn in different subcellular compartments of hepatopancreas and gill cells. Most of the Cd and part of the Zn accumulates within the soluble fraction of the cells, while the remainder of the Zn is found in insoluble inclusions, associated with P, Ca, Mg and Si in B-, F- and R-cells in the hepatopancreas, and haemocytes, nephrocytes and epithelial cells in the gills. No presence of Cd was observed in metal-rich inclusions in any cell analysed. Metallothionein-like proteins (MTLP), analysed by differential pulse polarography, were present in the hepatopancreas (12–18 mg g−1) and gills (7–8 mg g−1) of metal-exposed prawns. Binding to MTLP is the detoxification mechanism for cadmium, while the detoxification of zinc involves both binding to MTLP and incorporation into insoluble metal-rich inclusions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Al-Mohanna SY, Nott JA (1985) The accumulation of metals in the hepatopancreas of the shrimp Penaeus semisulcatus de Haan (Crustacea: Decapoda) during the moult cycle. In: Halwagy R, Clayton D, Behbehani M (eds) Marine environment and pollution. University of Kuwait, Kuwait pp 195–207

    Google Scholar 

  • Al-Mohanna SY, Nott JA (1987a) R-cells and the digestive cycle in Penaeus semisulcatus (Crustacea: Decapoda). Mar Biol 95:129–137

    Article  Google Scholar 

  • Al-Mohanna SY, Nott JA (1987b) M-’Midget’ cells and moult cycle in Penaeus semisulcatus (Crustacea: Decapoda). J Mar Biol Assoc UK 67:803–813

    Article  Google Scholar 

  • Al-Mohanna SY, Nott JA (1989) Functional cytology of the hepatopancreas of Penaeus semisulcatus (Crustacea: Decapoda) during the moult cycle. Mar Biol 101:535–544

    Article  Google Scholar 

  • Amiard JC, Pineau A, Boiteau H, Metayer C, Amiard-Triquet C (1987) Application of atomic absorption spectrophotometry using Zeeman effect to the determination of eight trace elements (Ag, Cd, Cr, Cu, Mn, Ni, Pb, and Se) in biological materials. Water Res 21:693–697

    Article  CAS  Google Scholar 

  • Andersen JT, Baatrup E (1988) Ultrastructural localization of mercury accumulation in the gills, hepatopancreas, midgut, and antennal glands of the brown shrimp, Crangon crangon. Aquat Toxicol 13:309–324

    Article  CAS  Google Scholar 

  • Arruda-Freire C, Campbell-McNamara J (1995) Fine structure of the gills of the fresh-water shrimp Macrobrachium olfersii (Decapoda): effect of acclimation to high salinity medium and evidence for involvement of the lamellar septum in ion uptake. J Crust Biol 15:103–116

    Article  Google Scholar 

  • Bryan GW (1976) Some aspects of heavy metal tolerance in aquatic organisms. In: Lockwood APM (eds) Effects of pollutants on aquatic organisms. Cambridge University Press, London pp 7–34

    Google Scholar 

  • Bryan GW, Langston WJ, Hummerstone LG, Burt GR (1985) A guide to the assessment of heavy-metal contamination in estuaries using biological indicators. Occ Publ Mar Biol Assoc UK 4:1–92

    Google Scholar 

  • Caceci T, Neck KF, Lewis DH, Sis RF (1988) Ultrastructure of the hepatopancreas of the Pacific white shrimp, Penaeus vannamei (Crustacea: Decapoda). J Mar Biol Assoc UK 68:323–337

    Article  Google Scholar 

  • Canli M, Stagg RM, Rodger G (1997) The induction of metallothionein in tissues of the Norway lobster Nephrops norvergicus following exposure to cadmium, copper and zinc: the relationship between metallothionein and the metal. Environ Pollut 96(3):343–350

    Article  CAS  Google Scholar 

  • Chavez-Crooker P, Pozo P, Castro H, Dice MS, Boutet I, Tanguy A, Moraga D, Ahearn GA, (2003) Cellular localization of calcium, heavy metals, and metallothionein in lobster (Homarus americanus) hepatopancreas. Comp Biochem Physiol C 136:213–224

    CAS  Google Scholar 

  • Campbell MJ, Radecki Z, Trinkl A, Burns KI (2000) Report on the intercomparison runs for the determination of trace and minor elements in cabbage material. Rep. IAEA/AL/123, IAEA-359, Vienna

  • Coquery M, Horvat M (1996) The analytical performance study for the MED POL area: determination of trace elements in marine sediments SD-MEDPOL-1/TM and fish homogenate MA-MEDPOL-1/TM. Report IAEA, Monaco

  • Carpene E (1993) Metallothionein in marine molluscs. In: Dallinger R, Rainbow PS (eds) Ecotoxicology of metals invertebrates. Lewis Publishers, Boca Raton pp 55–72

    Google Scholar 

  • Chinni S, Yallapragada PR (2000) Toxicity of copper, cadmium, zinc and lead to Penaeus indicus postlarvae: effects of individual metals. J Environ Biol 21:255–258

    CAS  Google Scholar 

  • Correa-Junior JD, Allodi S, Amado-Filho GM, Farina M (2000) Zinc accumulation in phosphate granules of Ucides cordatus hepatopancreas. Braz J Med Biol Res 33:217–221

    Article  CAS  Google Scholar 

  • Dall W, Moriarty DJ (1983) Functional aspects of nutrition and digestion. In: Mantel LH (eds) The biology of Crustacea, internal anatomy and physiological regulation. Academic Inc. NewYork pp 215–261

    Chapter  Google Scholar 

  • Davis LE, Burnett AL (1964) A study of growth and cell differentiation in the hepatopancreas of the cryfish. Dev Biol 10:122–153

    Article  CAS  Google Scholar 

  • Del Ramo J, Torreblanca A, Martinez MAP, Diaz-Mayans J (1995) Quantification of cadmium-induced metallothionein in crustaceans by the silver-saturation method. Mar Environ Res 39:121–125

    Article  Google Scholar 

  • Engel DW, Brouwer M (1993) Crustaceans as models for metal metabolism: I. Effects of the molt cycle on blue crab metal metabolism and metallothionein. Mar Environ Res 35:1–5

    Article  CAS  Google Scholar 

  • Engel DW, Roesijadi G (1987) Metallothioneins: a monitoring tool. In: Vernberg FJ (eds) Pollution physiology of estuarine organisms. University of South Carolina Press, USA, pp 421–438

    Google Scholar 

  • Foster CA, Howse HD (1978) A morphological study on gills of the brown shrimp, Penaeus aztecus. Tissue Cell 10:77–92

    Article  CAS  Google Scholar 

  • Gibson R, Barker PL (1979) The decapod hepatopancreas. Oceanogr Mar Biol Ann Rev 17:285–346

    Google Scholar 

  • Gilles R, Pequeux A (1983) Interactions of chemical and osmotic regulation with the environment. In: Vernberg FJ, Vernberg WB (eds) The biology of Crustacea. Environmental adaptations, vol. 8. Academic, New York, pp 109–177

  • Grey DL, Dall W, Baker A (1983) A guide to the Australian Penaeid prawns. Northern Territory Government Printing Office, Darwin, Australia. 140 pp

  • Hirsch GC, Jacobs W (1930) Der Arbeitsrhythmus der Mitteldarmdruse von Astacus leptodactyus. II. Teil: Wachstum als primarer Faktor des Rhythmus eines polyphasischen organigen Sekretionssystems. Z Vergl Physiol 12:524–557

    Article  Google Scholar 

  • Holthuis LB (1980) FAO Species Catalogue. Vol. 1. Shrimps and prawns of the world. An annotated catalogue of species of interest to fisheries. Food and Agriculture Organization of the United Nations, Rome, 271 pp

  • Hopkin SP (1989) Ecophysiology of metals in terrestrial invertebrates. Elsevier Applied Science, London, 366 pp

  • Hopkin SP, Nott JA (1980) Studies on the digestive cycle of the shore crab Carcinus meanes (L.) with special reference to the B-cells in the hepatopancreas. J Mar Biol Assoc UK 60:891–907

    Article  Google Scholar 

  • Icely JD, Nott JA (1992) Digestion and absorption: digestive system and associated organs. In: Harrison FW, Humes AG (eds) Microscopic anatomy of invertebrates, Decapod Crustacea, vol. 10. Wiley-Liss Inc, New York, pp 147–201

  • Jacobs W (1928) Untersuchungen uber die Cytologie der Sekretbildung in der Mitteldarmdruse von Aztecus leptodactylus. Z Zellforsch Mikrosk Anat 8:1–62

    Article  Google Scholar 

  • Johnston W, Barber AA (1969) Reconstitution of functional hemocyanin from apohemocyanin: the hepatopancreas as copper donor. Comp Biochem Physiol 28:1259–1273

    Article  CAS  Google Scholar 

  • Joseph KO, Srivastava JP, Kadir PMA (1992) Acute toxicity of five heavy metals to the prawn, Penaeus indicus H. Milne Edwards in brackishwater medium. J Inland Fish Soc India 24:82–84

    Google Scholar 

  • Law RJ, Waldock MJ, Allchin CR, Laslett RE, Bailey KJ (1994) Contaminants in seawater around England and Wales: results from monitoring surveys, 1990–1992. Mar Pollut Bull 28:668–675

    Article  CAS  Google Scholar 

  • Legras S, Mouneyrac C, Amiard JC, Amiard-Trichet C, Rainbow PS (2000) Changes in metallothionein concentrations in response to variation in natural factors (salinity, sex, weight) and metal contamination in crabs from a rich-metal estuary. J Exp Mar Biol Ecol 246:259–279

    Article  CAS  Google Scholar 

  • Le Reste L (1978) Biologie d’une population de crevettes Penaeus indicus H. Milne Edwards sur la cote nord-ouest de Madagascar. O.R.S.T.O.M., Paris. 291 pp

  • Marigomez I, Soto M, Carajaville MP, Angulo E, Giamberini L (2002) Cellular and subcellular distribution of metals in molluscs. Microsc Res Technol 56:358–392

    Article  CAS  Google Scholar 

  • Martin GG, Hose E (1992) Vascular elements and blood (Hemolymph). In: Harrison FW, Humes AG (eds) Microscopic anatomy of invertebrates, Decapod Crustacea, vol. 10. Wiley-Liss Inc, New York, pp 117–149

  • Mason AZ, Jenkins KD (1995) Metal detoxification in aquatic organisms. In: Tessier A, Turner RA (eds) Metal speciation and bioavailability in aquatic systems, vol. 3. Wiley, Chichester, pp 479–578

  • McClurg TP (1984) Effects of fluoride, cadmium and mercury on the estuarine prawn, Penaeus indicus. Water SA 10:40–45

    CAS  Google Scholar 

  • Moksnes PO, Lindahl U, Haux C (1995) Metallothionein as a bioindicator of heavy metal exposure in the tropical shrimp, Penaeus vannamei: a study of dose-dependant induction. Mar Environ Res 39:143–146

    Article  CAS  Google Scholar 

  • Mouneyrac C, Amiard-Trichet C, Amiard JC, Rainbow PS (2001) Comparison of metallothionein concentrations and tissue distribution of trace metals in crabs (Pachygrapsus mamoratus) from a metal-rich estuary, in and out the reproductive season. Comp Biochem Physiol C 129:193–209

    CAS  Google Scholar 

  • Nassiri Y, Rainbow PS, Amiard-Triquet C, Rainglet F, Smith BD (2000) Trace-metal detoxification in the ventral caeca of Orchestia gammarellus (Crustacea: Amphipoda). Mar Biol 136:477–484

    Article  CAS  Google Scholar 

  • Nimmo DWR, Lightner DV, Bahner LH (1977) Effects of cadmium on the shrimps, Penaeus duorarum, Palaemonetes pugio and Palaemonetes vulgaris. In: Vernberg FJ (Ed) Physiological responses of marine biota to pollutants. Academic, New York, pp 131–183

    Chapter  Google Scholar 

  • Nunez-Nogueira G, Rainbow PS (2005a) Kinetics of zinc uptake from solution, accumulation and excretion by the decapod crustacean Penaeus indicus. Mar Biol 147:93–103

    Article  Google Scholar 

  • Nunez-Nogueira G, Rainbow PS (2005b) Cadmium uptake and accumulation by the decapod crustacean Penaeus indicus. Mar Environ Res 60:339–354

    Article  CAS  Google Scholar 

  • Nunez-Nogueira G, Smith BD, Rainbow PS (2006) Assimilation efficiency of zinc and cadmium in the decapod crustacean Penaeus indicus. J Exp Mar Biol Ecol 332:75–83

    Article  CAS  Google Scholar 

  • Olafson RW, Olsson PE (1991) Electrochemical detection of metallothionein. Method Enzymol 205:205–213

    Article  CAS  Google Scholar 

  • Papathanassiou E, King PE (1984) Effects of starvation on the fine structure of the hepatopancreas in the common prawn Palaemon Serratus (Pennant). Comp Biochem Physiol 77A:243–249

    Article  Google Scholar 

  • Pérez-Farfante I, Kensley B (1997) Penaeoid and sergestoid shrimps and prawns of the world. Mémoires du Museum National d’Histoire Naturelle, Paris 175, pp 1–233

  • Pourang N, Dennis JH, Ghourchian H (2004) Tissue distribution and redistribution of trace elements in shrimp species with emphasis on the roles of metallothionein. Ecotox 13:519–533

    Article  CAS  Google Scholar 

  • Rainbow PS (1997) Ecophysiology of trace metal uptake in crustaceans. Estuar Coast Shelf Sci 44:169–175

    Article  CAS  Google Scholar 

  • Rainbow PS (1998) Phylogeny of trace metal accumulation in crustaceans. In: Langston WJ, Bebianno M (eds) Metal metabolism in aquatic environments. Chapman and Hall, London pp 285–319

    Chapter  Google Scholar 

  • Rainbow PS, Scott AG (1979) Two heavy metal-binding proteins in the midgut gland of the crab Carcinus maenas. Mar Biol 55:143–150

    Article  CAS  Google Scholar 

  • Roesijadi G (1981) The significance of low molecular weight, metallothionein-like proteins in marine invertebrates: current status. Mar Environ Res 4:167–179

    Article  CAS  Google Scholar 

  • Roesijadi G (1993). Metallothioneins in metal regulation and toxicity in aquatic animals. Aquat Toxicol 22:81–114

    Article  Google Scholar 

  • Soegianto A, Charmantier-Daures M, Trilles JP, Charmantier G (1999a) Impact of copper on the structure of gills and epipodites of the shrimp Penaeus japonicus (Decapoda). J Crust Biol 19:209–223

    Article  Google Scholar 

  • Soegianto A, Charmantier-Duares M, Trilles JP, Charmantier G (1999b) Impact of cadmium on the structure of gills and epipodites of the shrimp Penaeus japonicus (Crustacea: Decapoda). Aquat Living Resour 12:57–70

    Article  Google Scholar 

  • Taylor HM, Taylor EW (1992) Gills and lungs: exchange of gases and ions. In: Hamson FW, Humes AG (eds) Microscopic anatomy of invertebrates, Decapod Crustacea, vol. 10. Wiley-Liss Inc, New York, pp 203–293

  • Thompson JAJ, Cosson RP (1984) An improved electrochemical method for the quantification of metallothioneins in marine organisms. Mar Environ Res 11:137–152

    Article  CAS  Google Scholar 

  • Viarengo A, Burlando B, Dondero F, Marro A, Fabbri R (1999) Metallothionein as a tool in biomonitoring programmes. Biomarkers 4:455–466

    Article  CAS  Google Scholar 

  • Vogt G, Quinitio ET (1994) Accumulation and excretion of metal granules in the prawn, Penaeus monodon, exposed to water-borne copper, lead, iron and calcium. Aquat Toxicol 28:223–241

    Article  CAS  Google Scholar 

  • Williams B (2000) Biostatistics. Chapman and Hall/CRC. Boca Raton, 201pp

  • Wong VWT, Rainbow PS (1986) Two metallothioneins in the shore crab Carcinus maenas. Comp Biochem Physiol A 83(1):149–156

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by funding to GN-N from CONACyT and SEP-Mexico, and by funding to Dr. C. Amiard-Triquet (Service d’Ecotoxicologie, ISOMer, Nantes, France). It is a pleasure to acknowledge the considerable technical support of Keith Pell (Queen Mary College, University of London), and Dr. Alex Ball (The Natural History Museum, London), and for training and advice on the X-ray microanalysis and TEM analysis, respectively. We are also grateful for the technical support provided by CEREA-UCO (Angers, France).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. S. Rainbow.

Additional information

Communicated by J.P. Thorpe, Port Erin

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nunez-Nogueira, G., Mouneyrac, C., Amiard, J.C. et al. Subcellular distribution of zinc and cadmium in the hepatopancreas and gills of the decapod crustacean Penaeus indicus . Mar Biol 150, 197–211 (2006). https://doi.org/10.1007/s00227-006-0350-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-006-0350-0

Keywords

Navigation