Skip to main content
Log in

Photoacclimation in phytoplankton: implications for biomass estimates, pigment functionality and chemotaxonomy

  • Research Article
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Chl a and C-normalized pigment ratios were studied in two dinophytes (Prorocentrum minimum and Karlodinium micrum), three haptophytes (Chrysochromulina leadbeateri, Prymnesium parvum cf. patelliferum, Phaeocystis globosa), two prasinophytes (Pseudoscourfieldia marina, Bathycoccus prasinos) and the raphidophyte Heterosigma akashiwo, in low (LL, 35 μmol photons m−2 s−1) and high light (HL, 500 μmol photons m−2 s−1). Pigment ratios in LL and HL were compared against a general rule of photoacclimation: LL versus HL ratios ≥1 are typical for light-harvesting pigments (LHP) and <1 for photoprotective carotenoids. Peridinin, prasinoxanthin, gyroxanthin-diester and 19′-butanoyloxy-fucoxanthin were stable chemotaxonomic markers with less than 25% variation between LL versus HL Chl a–normalized ratios. As expected, Chls exhibited LL/HL to Chl a ratios >1 with some exceptions such as Chl c3 in P. globosa and MV Chl c3 in C. leadbeateri. LL/HL to Chl a ratios of photosynthetic carotenoids were close to 1, except Hex-fuco in P. globosa (four-fold higher Chl a ratio in HL vs LL). Although pigment ratios in P. globosa clearly responded to the light conditions the diadinoxanthin-diatoxanthin cycle remained almost unaltered at HL. Total averaged pigment and LHP to C ratios were significantly higher in LL versus HL, reflecting the photoacclimation status of the studied species. By contrast, the same Chl a-normalized ratios were weakly affected by the light intensity due to co-variation with Chl a. Based on our data, we suggest that the interpretation of PPC and LHP are highly dependent on biomass normalization (Chl a vs. C).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Reference

  • Anderson JM, Chow WS, Park Y-I (1995) The big design of photosynthesis: acclimation of the photosynthetic apparatus to environmental cues. Photosynth Res 46:129–139

    Article  CAS  Google Scholar 

  • Bains S, Richard D, Norris R, Courfield M, Faul KL (2000) Termination of global warmth at the Palaeocene/Eocene boundary through productivity feedback. Nature 407:171–174

    Article  CAS  Google Scholar 

  • Böhme K, Wilhelm C, Goss R, (2002) Light regulation of carotenoid biosynthesis in the prasinophycean Mantoniella squamata. Photochem Photobiol Sci 1:619–628

    Article  Google Scholar 

  • Cloern JE, Grenz C, Vidergar-Lucas L (1995) An empirical model of the phytoplankton chlorophyll:carbon ratio—the conversion factor between productivity and growth rate. Limnol Oceanogr 40:1313–1321

    Article  Google Scholar 

  • Egeland ES, Johnsen G, Eikrem W, Throndsen J, Liaaen-Jensen S (1995) Pigments of Bathycoccus prasinos (Prasinophyceae): methodological and chemosystematic implications. J Phycol 31:554–561

    Article  CAS  Google Scholar 

  • Egeland ES, Guillard RRL, Liaaen-Jensen S (1997) Additional carotenoid prototype representatives and a general chemosystematic evaluation of carotenoids in Prasinophyceae (Chlorophyta). Phytochemistry 44:1087–1097

    Article  CAS  Google Scholar 

  • Falkowski PG, Dubinsky Z, Wyman K (1985) Growth-irradiance relationships in phytoplankton. Limnol Oceanogr 30:311–321

    Article  CAS  Google Scholar 

  • Falkowski PG, Raven J (eds) (1997) Aquatic Photosynthesis. Blackwell, Oxford, UK

  • Fawley MW (1992) Photosynthetic pigments of Pseudoscourfieldia marina and select green flagellates and coccoid ultraphytoplankton: implications for the systematics of the Micromonadophyceae (Chlorophyta). J Phycol 28:26–31

    Article  CAS  Google Scholar 

  • Fenchel T (1988) Marine planktonic food chains. Ann Rev Ecol Syst 19:19–38

    Article  Google Scholar 

  • Garibotti IA, Vernet M, Kozlowski WA, Ferrario ME (2003) Composition and biomass of phytoplankton assemblages in coastal Antarctic waters: a comparison of chemotaxonomic and microscopic analyses. Mar Ecol Prog Ser 247:27–42

    Article  CAS  Google Scholar 

  • Garrido JL, Otero J, Maestro MA, Zapata M (2000) The main non-polar chlorophyll c from Emiliania huxleyi (Prymnesiophyceae) is a chlorophyll c2-monogalactosyl-diacylglyceride ester: a mass spectrometry study. J Phycol 36:497–505

    Article  CAS  Google Scholar 

  • Goericke R, Montoya JP (1998) Estimating the contribution of microalgal taxa to chlorophyll a in the field-variations of pigment ratios under nutrient-and light-limited growth. Mar Ecol Prog Ser 169:97–112

    Article  Google Scholar 

  • Goss R, Böhme K, Wilhelm C (1998) The xanthophyll cycle of Mantoniella squamata converts violaxanthin into antheraxanthin but not to zeaxanthin: consequences for the mechanism of enhanced non-photochemical energy dissipation. Planta 205:613–621

    Article  CAS  Google Scholar 

  • Guillard RRL, Ryther JH (1962) Studies of marine plankton diatoms. I. Cyclotella nana Hustedt and Detonula confervacea. (Cleve) Gran Can J Microbiol 8:229–239

    Article  CAS  Google Scholar 

  • Henriksen P, Riemann B, Kaas H, Sørensen HM, Sørensen HL (2002) Effects of nutrient-limitation and irradiance on marine phytoplankton pigments. J Plankton Res 24:835–858

    Article  CAS  Google Scholar 

  • Jeffrey SW, Mantoura RFC, Bjørnland T (1997) Data for the identification of 47 key phytoplankton pigments. In: Jeffrey SW, Mantoura RFC, Wright SW, (eds) Phytoplankton pigments in oceanography: guidelines to modern methods. UNESCO, Paris, pp 449–559

    Google Scholar 

  • Johnsen G, Prézelin BB, Jovine RVM, (1997) Fluorescence excitation spectra and light utilization in two red tide dinoflagellates. Limnol Oceanogr 42:1166–1177

    Article  CAS  Google Scholar 

  • Johnsen G, Sakshaug E (1993) Bio-optical characteristics and photoadaptive responses in the toxic and bloom-forming dinoflagellates Gyrodinium aureolum, Gymnodinium galatheanum, and two strains of Prorocentrum minimum. J Phycol 29:627–642

    Article  CAS  Google Scholar 

  • Larsen A (1999) Prymnesium parvum and P. patelliferum (Haptophyta)—one species. Phycologia 38:541–543

    Article  Google Scholar 

  • Latasa M, Scharek R, LeGall F, Guillou L (2004) Pigment suites and taxonomic groups in Prasinophyceae. J Phycol 40:1149–1155

    Article  CAS  Google Scholar 

  • Lefèvre N, Taylor AH, Gilbert FJ, Geider RJ (2001) Modeling carbon to nitrogen and carbon to chlorophyll a ratios in the ocean at low latitudes: evaluation of the role of physiological plasticity. Limnol Oceanogr 48:1796–1807

    Article  Google Scholar 

  • Llewellyn CA, Gibb SW (2000) Intra-class variablity in the carbon, pigment and biomineral content of prymnesiophytes and diatoms. Mar Ecol Prog Ser 193:33–44

    Article  CAS  Google Scholar 

  • Llewellyn CA, Fishwick JR, Blackford JC (2005) Phytoplankton community assemblage in the English Channel: a comparison using Chl a derived from HPLC-CHEMTAX and carbon derived from microscopy cell counts. J Plankton Res 27:103–119

    Article  CAS  Google Scholar 

  • Lohr M, Wilhelm C (1999) Algae displaying the diadinoxanthin cycle possess the violaxanthin cycle. Proc Natl Acad Sci USA 96:8784–8798

    Article  CAS  Google Scholar 

  • Millie D, Schofield O, Kirkpatrick G, Johnsen G, Tester P, Vinyard B (1997) Detection of harmful algal blooms using photopigments and absorption signatures: a case study of the Florida red tide dinoflagellate, Gymnodinium breve. Limnol Oceanogr 42:1240–1251

    Article  CAS  Google Scholar 

  • Niyogi KK, Björkman O, Grossman AR (1997) The roles of specific xanthophylls in photoprotection. Proc Natl Acad Sci USA 94:14162–14167

    Article  CAS  Google Scholar 

  • Porra RJ, Pfündel EE, Engel N (1997) Metabolism and function of photosynthetic pigments. In: Jeffrey SW, Mantoura RFC, Wright SW (eds) Phytoplankton pigments in oceanography: guidelines to modern methods. UNESCO, Paris, pp 85–126

    Google Scholar 

  • Riegman R, Kraay GW, (2001) Phytoplankton community structure derived from HPLC analysis of pigments in the Faroe-Shetland Channel during summer 1999: the distribution of taxonomic groups in relation to physical/chemical conditions in the photic zone. J Plankton Res 23:191–205

    Article  CAS  Google Scholar 

  • Sakshaug E, Graneli E, Elbrachter M, Kayser H (1984) Chemical composition and alkaline phosphatase activity of nutrient-saturated and P-deficient cells of four marine dinoflagellates. J Exp Mar Biol Ecol 77:241–254

    Article  CAS  Google Scholar 

  • Sakshaug E, Bricaud A, Dandonneau Y, Falkowski P, Kiefer D, Legendre L, Morel A, Parslow J, Takahashi M (1997) J Plankton Res 19:1637–1670

    Article  CAS  Google Scholar 

  • Schlüter L, Møhlenberg F, Havskum H, Larsen S, (2000) The use of phytoplankton pigments for identifying and quantifying phytoplankton groups in coastal areas: testing the influence of light and nutrients on pigment/chlorophyll a ratios. Mar Ecol Prog Ser 192:49–63

    Article  Google Scholar 

  • Stolte W, Kraay GW, Noordeloos AAM, Riegman R (2000) Genetic and physiological variation in pigment composition of Emiliania huxleyi (Prymnesiophyceae) and the potential use of its pigment ratios as a quantitative physiological marker. J Phycol 36:529–539

    Article  CAS  Google Scholar 

  • van Leeuwe MA, Stefels J (1998) Effects of iron and light stress on the biochemical composition of Antarctic Phaeocystis sp II Pigment composition. J Phycol 34:496–503

    Article  Google Scholar 

  • Wright SW, van den Enden RL (2000) Phytoplankton populations off east Antarctica in relation to stratification/mixing regimes: CHEMTAX analysis of HPLC pigment profiles (BROKE survey, Jan-Mar 1996). Deep-Sea Res II 47:2363–2400

    Article  Google Scholar 

  • Zapata M, Rodríguez F, Garrido JL, (2000) Separation of chlorophylls and carotenoids from marine phytoplankton: a new HPLC method using a reversed-phase C8 column and pyridine-containing mobile phases. Mar Ecol Prog Ser 195:29–45

    Article  CAS  Google Scholar 

  • Zapata M, Edvardsen B, Rodríguez F, Maestro MA, Garrido JL (2001) Chlorophyll c2 monogalactosyldiacylglyceride ester (chl c2?-MGDG) a marker pigment for Chrysochromulina polylepis species (Haptophyta). Mar Ecol Prog Ser 219:85–98

    Article  CAS  Google Scholar 

  • Zapata M, Jeffrey SW, Rodríguez F, Clementson L, Garrido JL, Wright SW (2004) Pigment variability in 37 species (65 strains) of Haptophyta: implications for phylogeny and oceanography. Mar Ecol Prog Ser 270:83–102

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr W. Eikrem for providing cultures of B. prasinos, C. leadbeateri and H. akashiwo. This work has been supported by the HP (Human Potential) Programme from the European Union through contract N° HPRI-1999-CT-00060.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Johnsen.

Additional information

Communicated by S.A. Poulet, Roscoff

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodríguez, F., Chauton, M., Johnsen, G. et al. Photoacclimation in phytoplankton: implications for biomass estimates, pigment functionality and chemotaxonomy. Marine Biology 148, 963–971 (2006). https://doi.org/10.1007/s00227-005-0138-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-005-0138-7

Keywords

Navigation