Skip to main content

Advertisement

Log in

Community structure in Florida Escarpment seep and Snake Pit (Mid-Atlantic Ridge) vent mussel beds

  • Research Article
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Comparisons between invertebrate communities hosted by similar foundation species under different environmental conditions permit identification of patterns of species distributions that might be characteristic of the different ecosystems. Similarities and differences in community structure between two major types of chemosynthetic ecosystems were assessed by analyzing samples of invertebrates associated with Bathymodiolus heckerae Gustafson et al. mussel beds at the Florida Escarpment seep (Gulf of Mexico, 26°01.8′N; 84°54.9′W; October 2000) and B. puteoserpentis von Cosel et al. mussel beds at the Snake Pit vent (Mid-Atlantic Ridge, 23°22.1′N; 44°56.9′W; July 2001). Macrofaunal species richness was nearly twice as high in the seep mussel bed compared to the vent mussel bed, and only a single morphospecies, the ophiuroid Ophioctenella acies Tyler et al., was shared between the sites. Similarities between the two faunas at higher taxonomic levels (genus and family) were evident for only a small percentage of the total number of taxa, suggesting that evolutionary histories of many of these seep and vent macrofaunal taxa are not shared. The taxonomic distinctiveness of the seep and vent mussel-bed macrofaunal communities supports the hypothesis that environmental and oceanographic barriers prevent most taxa from occupying both types of habitats. Macrofaunal community heterogeneity among samples was similar in seep and vent mussel beds, indicating that spatial scales of processes regulating community variability may be similar in the two types of ecosystems. Suspension feeders were not represented in the macrofauna of seep or vent mussel beds. Primary consumers (deposit feeders and grazers) contributed more to the total abundance of macrofauna of seep mussel beds than vent mussel beds; secondary consumers (polychaetes and shrimp) were more abundant in the vent mussel beds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2A, B
Fig. 3
Fig. 4A, B

Similar content being viewed by others

References

  • Biscoito M, Segonzac M, Almeida AJ, Desbruyères D, Geistdoerfer P, Turnipseed M, Van Dover CL (2002) Fishes from the hydrothermal vents and cold seeps—an update. Cah Biol Mar 43:359–362

    Google Scholar 

  • Boulègue J, Iiyama JT, Charlou JL, Jedwab J (1987) Nankai Trough, Japan Trench and Kuril Trench: geochemistry of fluids sampled by submersible ‘Nautile’. Earth Planet Sci Lett 10:177–181

    Google Scholar 

  • Brusca RC, Brusca GJ (2003) Invertebrates, 2nd edn. Sinauer, Sunderland, Mass., USA

  • Carney RS (1994) Consideration of the oasis analogy for chemosynthetic communities at Gulf of Mexico hydrocarbon vents. Geo-Mar Lett 14:149–159

    Google Scholar 

  • Cavanaugh CM (1983) Symbiotic chemoautotrophic bacteria in marine invertebrates from sulphide-rich habitats. Nature 302:58–61

    CAS  Google Scholar 

  • Cavanaugh CM, Levering PR, Maki JS, Mitchell R, Lidstrom M (1987) Symbiosis of methylotrophic bacteria and deep-sea mussels. Nature 325:346–348

    Article  Google Scholar 

  • Cavanaugh CM, Wirsen CO, Jannasch HW (1992) Evidence for methylotrophic symbionts in a hydrothermal vent mussel (Bivalvia: Mytilidae) from the Mid-Atlantic Ridge. Appl Environ Microbiol 58:3799–3803

    CAS  Google Scholar 

  • Chanton JP, Martens CS, Paull CK, Coston JA (1993) Sulfur isotope and porewater geochemistry of Florida Escarpment seep sediments. Geochim Cosmochim Acta 57:1253–1266

    Article  CAS  Google Scholar 

  • Chevaldonné P, Jollivet D, Feldman RA, Desbruyères D, Lutz RA, Vrijenhoek RC (1998) Commensal scale-worms of the genus Branchipolynoe (Polychaeta: Polynoidae) at deep-sea hydrothermal vents and cold seeps. Cah Biol Mar 39:347–350

    Google Scholar 

  • Clarke KR, Gorley RN (2001) PRIMER v5: user manual/tutorial. PRIMER-E, Plymouth, UK

  • Clarke KR, Warwick RM (2001) Change in marine communities: an approach to statistical analysis and interpretation. Primer-E, Plymouth, UK

    Google Scholar 

  • Colaço A, Dehairs F, Desbruyères D (2002) Nutritional relations of deep-sea hydrothermal fields at the Mid-Atlantic Ridge: a stable isotope approach. Deep-Sea Res I 49:395–412

    Google Scholar 

  • Colwell RK (1997) EstimateS: statistical estimation of species richness and shared species from samples, version 5. User’s guide and application. Available at http://viceroy.eeb.uconn.edu/estimates

  • Cosson-Sarradin N, Sibuet M, Paterson GLJ, Vangriesheim A (1998) Polychaete diversity at tropical Atlantic deep-sea sites: environmental effects. Mar Ecol Prog Ser 165:173–185

    Google Scholar 

  • Craddock C, Hoch WR, Gustafson RG, Lutz RA, Hashimoto J, Vrijenhoek RC (1995) Evolutionary relationships among deep-sea mytilids (Bivalvia: Mytilidae) from hydrothermal vents and cold-water methane/sulfide seeps. Mar Biol 121:477–485

    Google Scholar 

  • Desbruyères D, Almeida A, Biscoito M, Cometet T, Khripounoff A, Le Bris N, Sarradin PM, Segonzac M (2000) A review of the distribution of hydrothermal vent communities along the northern Mid-Atlantic Ridge: dispersal vs. environmental controls. Hydrobiologia 440:201–216

    Article  Google Scholar 

  • Felbeck H, Childress JJ, Somero GN (1981) Calvin–Benson cycle and sulfide oxidation enzymes in animals from sulfide-rich habitats. Nature 293:291–293

    CAS  Google Scholar 

  • Fisher CR, Urcuyo IA, Simpkins MA, Nix E (1997) Life in the slow lane: growth and longevity of cold-seep vestimentiferans. Mar Ecol 18:83–94

    Google Scholar 

  • Fouquet Y, Wafik A, Cambon P, Mevel C, Meyer G, Gente P (1993) Tectonic setting and mineralogical and geochemical zonation in the Snake Pit sulfide deposit (Mid-Atlantic Ridge at 23°N). Econ Geol Bull Soc Econ Geol 88:2018–2036

    CAS  Google Scholar 

  • Frouin P, Hutchings P (2001) Macrobenthic communities in a tropical lagoon (Tahiti, French Polynesia, Central Pacific). Coral Reefs 19:277–285

    Google Scholar 

  • Gebruk AV, Chevaldonne P, Shank TM, Vrijenhoek RC, Lutz RA (2000) Deep-sea hydrothermal communities of the Logatchev area (14°45′N, Mid-Atlantic Ridge): diverse biotopes and high biomass. J Mar Biol Assoc UK 80:383–393

    Article  Google Scholar 

  • Grassle JF, Brown-Leger LS, Morse-Porteous L, Petrecca R, Williams I (1985) Deep-sea fauna of sediments in the vicinity of hydrothermal vents. Biol Soc Wash Bull 6:443–452

    Google Scholar 

  • Guinot D (1989) Description de Segonzacia mesatlantica (Williams): campagne HYDROSNAKE 1988 sur la dorsale médio-Atlantique (Crustacea Decapoda Brachyura). Bull Mus Natn Hist Nat Sect A Zool Biol Ecol Anim 11:203–231

    Google Scholar 

  • Hashimoto J, Ohta S, Fujikura K, Miura T (1995) Microdistribution pattern and biogeography of the hydrothermal vent communities of the Minami-Ensei Knoll in the Mid-Okinawa Trough, western Pacific. Deep-Sea Res I 42:577–598

    Google Scholar 

  • Hayek LC, Buzas MA (1997) Surveying natural populations. Columbia University Press, New York

  • Hecker B (1985) Fauna from a cold sulfur-seep in the Gulf of Mexico: comparison with hydrothermal vent communities and evolutionary implications. Bull Biol Soc Wash 6:465–473

    Google Scholar 

  • Hoeisaeter T, Johannessen PJ (2001) Xylodiscula planata sp. nov., a “lower” heterobranch gastropod from Norwegian waters. Sarsia 86:325–332

    Google Scholar 

  • Karson JA, Brown JR (1988) Geologic setting of the Snake Pit hydrothermal site: an active vent field on the Mid-Atlantic Ridge. Mar Geophys Res 10:91–107

    Google Scholar 

  • Kulm LD, Suess E, Moore JC, Carson B, Lewis BT, Ritger SD, Kadko DC, Thornburg TM, Embley RW, Rugh WD, Massoth GJ, Langseth MG, Cochrane GR, Scamman RL (1986) Oregon subduction zone: venting, fauna and carbonates. Science 231:561–566

    CAS  Google Scholar 

  • Lalou C, Reyss JL, Brichet E, Arnold M, Thompson G, Fouquet Y, Rona PA (1993) New age data for Mid-Atlantic Ridge hydrothermal sites—TAG and Snake Pit chronology revisited. J Geophys Res Solid Earth 98B:9705–9713

    Google Scholar 

  • Legendre P, Legendre L (1998) Numerical ecology. Elsevier, Amsterdam

  • Levin LA, Huggett CL, Wishner KF (1991) Control of deep-sea benthic community structure by oxygen and organic-matter gradients in the eastern Pacific Ocean. J Mar Res 49:763–800

    Google Scholar 

  • Luther GW III, Rozan TF, Taillefert M, Nuzzio DB, Di Meo C, Shank TM, Lutz RA, Cary SC (2001) Chemical speciation drives hydrothermal vent ecology. Nature 410:813–816

    Article  CAS  PubMed  Google Scholar 

  • Marshall BA (1994) Deep-sea gastropods from the New Zealand region associated with recent whale bones and an Eocene turtle. Nautilus 108:1–8

    Google Scholar 

  • Martens CS, Chanton JP, Paull CK (1991) Biogenic methane in the Florida Escarpment brine seeps. Geology (Boulder) 19:851–857

  • Menge BA, Branch GM (2001) Rocky intertidal communities. In: Bertness MD, Gaines SD, Hay ME (eds) Marine community ecology. Sinauer, Sunderland, Mass., USA, pp 221–251

  • Mevel C, Auzende J-M, Cannat M, Donval J-P, Dubois J, Fouquet Y, Gente P, Grimaud D, Karson J, Segonzac M, Stievenard M (1989) La ride du Snake Pit (dorsale médio-Atlantique 23°22′N): résultats préliminaires de la campagne HYDROSNAKE. C R Acad Sci Ser II A Sci Terre Planetes 308:545–552

    Google Scholar 

  • Micheli F, Peterson CH, Mullineaux LS, Fisher CR, Mills SW, Sancho G, Johnson G, Lenihan HS (2002) Predation structures communities at deep-sea hydrothermal vents. Ecol Monogr 72:365–382

    Google Scholar 

  • Paull CK, Hecker B, Commeau R, Freeman-Lynde RP, Newmann C, Corso WP, Golubie S, Hook JE, Sikes E, Curray J (1984) Biological communities at the Florida Escarpment resemble hydrothermal vent taxa. Science 226:965–967

    CAS  Google Scholar 

  • Paull CK, Chanton JP, Martens CS, Fullagar PD, Neumann AC, Coston JA (1991) Seawater circulation through the flank of the Florida Platform: evidence and implications. Mar Geol 102:265–279

    Article  CAS  Google Scholar 

  • Peek AS, Gaut BS, Feldman RA, Barry JP, Kochevar RE, Lutz RA, Vrijenhoek RC (2000) Neutral and non-neutral mitochondrial genetic variation in deep-sea clams from the family Vesicomyidae. J Mol Evol 50:141–153

    CAS  PubMed  Google Scholar 

  • Rex MA, Stuart CT, Coyne G (2000) Latitudinal gradients of species richness in the deep-sea benthos of the North Atlantic. Proc Natl Acad Sci USA 97:4082–4085

    CAS  PubMed  Google Scholar 

  • Robinson JJ, Polz MF, Fiala-Medioni A, Cavanaugh CM (1998) Physiological and immunological evidence for two distinct C1-utilizing pathways in Bathymodiolus puteoserpentis (Bivalvia: Mytilidae), a dual endosymbiotic mussel from the Mid-Atlantic Ridge. Mar Biol 132:625–633

    CAS  Google Scholar 

  • Rosenzweig ML (1995) Species diversity in space and time. Cambridge University Press, Cambridge

  • Rouse GW, Pleijel F (2001) Polychaetes. Oxford University Press, New York

  • Sahling H, Rickert D, Lee RW, Linke P, Suess E (2002) Macrofaunal community structure and sulfide flux at gas hydrate deposits from the Cascadia convergent margin, NE Pacific. Mar Ecol Prog Ser 231:121–138

    Google Scholar 

  • Scheltema AH (1991) Helicoradomenia juani gen. et sp. nov., a Pacific hydrothermal vent Aplacophora (Mollusca: Neomeniomorpha). Veliger 34:195–203

    Google Scholar 

  • Scott KM, Fisher CR (1995) Physiological ecology of sulfide metabolism in hydrothermal vent and cold seep vesicomyid clams and vestimentiferan tube worms. Am Zool 35:102–111

    CAS  Google Scholar 

  • Segonzac M (1992) The hydrothermal vent communities of Snake Pit area (Mid-Atlantic Ridge 23°N, 3480 m)—megafaunal composition and microdistribution. C R Acad Sci Ser III Life Sci 314:593–600

    Google Scholar 

  • Segonzac M, de Saint Laurent M, Casanova B (1993) L’énigme du comportement trophique des crevettes Alvinocarididae des sites hydrothermaux de la dorsale médio-Atlantique. Cah Biol Mar 34:535–571

    Google Scholar 

  • Sibuet M, Olu K (1998) Biogeography, biodiversity, and fluid dependence of deep-sea cold-seep communities at active and passive margins. Deep-Sea Res II 45:517–567

    Google Scholar 

  • Smirnov AV, Gebruk AV, Galkin SV, Shank T (2000) New species of holothurian (Echinodermata: Holothuroidea) from hydrothermal vent habitats. J Mar Biol Assoc UK 80:321–328

    Article  Google Scholar 

  • Sudarikov SM, Galkin SV (1995) Geochemistry of the Snake Pit vent field and its implications for vent and non-vent fauna. In: Parson LM, Walker CL, Dixon DR (eds) Hydrothermal vents and processes. Special publication 87, Geological Society, London, pp 249–256

  • Suess E, Bohrmann G, von Huene R, Linke P, Wallmann K, Winckler G, Lutz RA, Orange D (1998) Fluid venting in the Aleutian subduction zone. J Geophys Res 103:2597–2614

    CAS  Google Scholar 

  • Sysoev AV, Kantor YI (1995) Two new species of Phymorhynchus (Gastropoda, Conoidea, Conidae) from the hydrothermal vents. Ruthenica 5:17–26

    Google Scholar 

  • Tsuchiya M, Nishihira M (1986) Islands of Mytilus edulis as a habitat for small intertidal animals; effect of Mytilus age structure on the species composition of the associated fauna and community organization. Mar Ecol Prog Ser 31:171–178

    Google Scholar 

  • Tsurumi M (2003) Diversity at hydrothermal vents. Global Ecol Biogeogr Lett 12:181–190

    Google Scholar 

  • Tsurumi M, Tunnicliffe V (2003) Tubeworm-associated communities at hydrothermal vents on the Juan de Fuca Ridge, northeast Pacific. Deep-Sea Res I 50:611–629

    Google Scholar 

  • Tsurumi M, de Graaf RC, Tunnicliffe V (2003) Distributional and biological aspects of copepods at hydrothermal vents on the Juan de Fuca Ridge, northeast Pacific ocean. J Mar Biol Assoc UK 83:469–477

    Article  Google Scholar 

  • Tunnicliffe V (1991) The biology of hydrothermal vents: ecology and evolution. Oceanogr Mar Biol Annu Rev 29:319–417

    Google Scholar 

  • Tunnicliffe V, Fowler CMR (1996) Influence of sea-floor spreading on the global hydrothermal vent fauna. Nature 379:531–533

    CAS  Google Scholar 

  • Tunnicliffe V, McArthur AG, McHugh D (1998) A biogeographical perspective of the deep-sea hydrothermal vent fauna. Adv Mar Biol 34:353–442

    Google Scholar 

  • Turnipseed M, Knick KE, Lipcius RN, Dreyer J, Van Dover CL (2003) Diversity in mussel beds at deep-sea hydrothermal vents and cold seeps. Ecol Lett 6:518–523

    Article  Google Scholar 

  • Tyler PA, Paterson GJL, Sibuet M, Guille A, Murton BJ, Segonzac M (1995) A new genus of ophiuroid (Echinodermata: Ophiuroidea) from hydrothermal mounds along the Mid-Atlantic Ridge. J Mar Biol Assoc UK 75:977–986

    Google Scholar 

  • Van Dover CL (1995) Ecology of Mid-Atlantic Ridge hydrothermal vents. In: Parson LM, Walker CL, Dixon DR (eds) Hydrothermal vents and processes. Special publication 87, Geological Society, London, pp 257–294

  • Van Dover CL (2000) The ecology of deep-sea hydrothermal vents. Princeton University Press, Princeton, N.J., USA

  • Van Dover CL (2002) Community structure of mussel beds at deep-sea hydrothermal vents. Mar Ecol Prog Ser 230:137–158

    Google Scholar 

  • Van Dover CL (2003) Variation in community structure within hydrothermal-vent mussel beds of the East Pacific Rise. Mar Ecol Prog Ser 253:55–66

    Google Scholar 

  • Van Dover CL, Trask JL (2000) Diversity at deep-sea hydrothermal vent and intertidal mussel beds. Mar Ecol Prog Ser 195:169–178

    Google Scholar 

  • Van Dover CL, German CR, Speer KG, Parson LM, Vrijenhoek RC (2002) Evolution and biogeography of deep-sea vent and seep invertebrates. Science 295:1253–1257

    Article  PubMed  Google Scholar 

  • Van Dover CL, Aharon P, Bernhard JM, Caylor E, Doerries M, Flickinger W, Gilhooly W, Goffredi SK, Knick K, Macko SA, Rapoport S, Raulfs EC, Ruppel C, Salerno J, Seitz RD, Sen Gupta BK, Shank T, Turnipseed M, Vrijenhoek R (2003) Blake Ridge methane seeps: characterization of a soft-sediment, chemosynthetically based ecosystem. Deep-Sea Res I 50:281–300

    Google Scholar 

  • Voight JR (2000) A review of predators and predation at deep-sea hydrothermal vents. Cah Biol Mar 41:155–166

    Google Scholar 

  • von Cosel R, Olu K (1998) Gigantism in Mytilidae. A new Bathymodiolus from cold seep areas on the Barbados Accretionary Prism. C R Acad Sci Ser III Life Sci 321:655–663

    Google Scholar 

  • Von Damm KL (1995) Controls on the chemistry and temporal variability of seafloor hydrothermal fluids. In: Humphris SE, Zierenberg RA, Mullineaux LS, Thomson RE (eds) Seafloor hydrothermal systems. Geophysical monograph 91, American Geophysical Union, Washington, D.C., pp 222–247

  • Ward ME, Jenkins CD, Van Dover CL (2003) Functional morphology and feeding strategy of the hydrothermal-vent polychaete Archinome rosacea (family Archinomidae). Can J Zool 81:582–590

    Article  Google Scholar 

  • Warén A, Bouchet P (1989) New gastropods from East Pacific hydrothermal vents. Zool Scr 18:67–102

    Google Scholar 

  • Warén A, Bouchet P (1993) New records, species, genera, and a new family of gastropods from hydrothermal vents and hydrocarbon seeps. Zool Scr 22:1–90

    Google Scholar 

  • Warén A, Bouchet P (2001) Gastropoda and Monoplacophora from hydrothermal vents and seeps; new taxa and records. Veliger 44:116–231

    Google Scholar 

  • Warwick RM, Clarke KR (1995) New ‘biodiversity’ measures of community stress reveal a decrease in taxonomic distinctness with increasing stress. Mar Ecol Prog Ser 129:301–305

    Google Scholar 

  • Williams AB (1988) New marine decapod crustaceans from waters influenced by hydrothermal discharge, brine, and hydrocarbon seepage. Fish Bull (Wash DC) 86:263–287

    Google Scholar 

Download references

Acknowledgements

We thank the captain and crew of the R.V. “Atlantis”, the pilots and crew of the D.S.V. “Alvin”, and the shipboard scientific parties for assistance in collecting and processing samples. We also thank M. Doerries, K. Knick, S. Rapaport, E. Raulfs, M. Ward, and C. Zoon for assistance in sorting samples and are grateful to A. Warén, P. Tyler, K. Fauchald, M. Hooge, and S. Tyler, who helped us with identifications. R. Lipcius and S. Ware contributed to the development of this manuscript. Two anonymous reviewers provided valuable critiques of the original manuscript. This work was supported by the National Science Foundation (Division of Biological Oceanography; OCE-988550, OCE-9982999), NOAA’s National Undersea Research Program—University of North Carolina, Wilmington, and the College of William and Mary. Work completed in this study complied with the current laws of the country in which they were undertaken.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. L. Van Dover.

Additional information

Communicated by J.P. Grassle, New Brunswick

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Turnipseed, M., Jenkins, C.D. & Van Dover, C.L. Community structure in Florida Escarpment seep and Snake Pit (Mid-Atlantic Ridge) vent mussel beds. Marine Biology 145, 121–132 (2004). https://doi.org/10.1007/s00227-004-1304-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-004-1304-z

Keywords

Navigation