Skip to main content
Log in

New acylated flavonol glycosides with antibacterial activity from root barks of Sophora japonica

  • Original
  • Published:
Wood Science and Technology Aims and scope Submit manuscript

Abstract

The root barks of Sophora japonica L., a plant widely used in traditional Chinese medicine, were extracted with 70 % Me2CO. The antibacterial activity of the crude extracts and fractions from the subsequent purification was evaluated against two Gram-positive bacteria (Bacillus subtilis and Staphylococcus aureus) and two Gram-negative bacteria (Klebsiella pneumonia and Escherichia coli). Further purification of the EtOAc fraction, which exhibited the strongest bacterial inhibitory activity among the resultant fractions, led to the isolation of three new acylated flavonol glycosides, quercetin 3-O-(4″-(E)-caffeoyl)-α-rhamnopyranoside (1), quercetin 3-O-(4″-(Z)-caffeoyl)-α-rhamnopyranoside (2) and kaempferol 3-O-(4″-galloyl)-α-rhamnopyranoside (3), as well as a known flavonol glycoside, kaempferol 3-O-α-arabinofuranoside (4). Structures of the isolated compounds were elucidated by spectroscopic techniques such as 1D and 2D NMR, and other chemical methods. Acylated flavonol glycosides 13 are new natural compounds, and their structures were elucidated here for the first time. Antibacterial study indicated that compounds 13 showed bacteria inhibitory effects, especially against S. aureus. Compound 3 was the most potent one, with MIC values of 25, 0.78, 6.25 and 50 μg/mL against B. subtilis, S. aureus, K. pneumonia and E. coli, respectively, while compound 4 did not exhibit antibacterial capability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Akhavan M, Jahangiri S, Shafaghat A (2015) Studies on the antioxidant and antimicrobial activity and flavonoid derivatives from the fruit of Trigonosciadium brachytaenium (Boiss.) Alava. Ind Crops Prod 63:114–118

    Article  CAS  Google Scholar 

  • Baron EJ, Finegold SM (1990) Methods for testing antimicrobial effectiveness. In: Stephanie M (ed) Diagnostic microbiology. Mosby, Baltimore, pp 171–194

    Google Scholar 

  • Burcu B, Aysel U, Nurdan S (2014) Antimicrobial, antioxidant, antimutagenic activities, and phenolic compounds of Iris germanica. Ind Crops Prod 61:526–530

    Article  CAS  Google Scholar 

  • Cowan MM (1999) Plant products as antimicrobial agents. Clin Microbiol Rev 12:564–582

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eloff JN (1998) A sensitive and quick microplate method to determine the minimal inhibitory concentration of plant extracts for bacteria. Planta Med 64:711–713

    Article  CAS  PubMed  Google Scholar 

  • Geibel M, Geiger H, Treutter D (1990) Tectochrysin 5- and genistein 5-glucosides from the bark of Prunus cerasus. Phytochemistry 29:1351–1353

    Article  CAS  Google Scholar 

  • Grishkovets V, Gorbacheva L (1995) Triterpene glycosides of Sophora japonica seeds. Chem Nat Compd 31:596–599

    Article  Google Scholar 

  • Harvey AL (1999) Medicines from nature: are natural products still relevant to drug discovery? Trends Pharmacol Sci 20:196–198

    Article  CAS  PubMed  Google Scholar 

  • Imakura Y, Kobayashi S, Mima A (1985) Bitter phenyl propanoid glycosides from Campsis chinensis. Phytochemistry 24:139–146

    Article  CAS  Google Scholar 

  • Jung HA, Kim AR, Chung HY, Choi JS (2002) In vitro antioxidant activity of some selected Prunus species in Korea. Arch Pharm Res 25:865–872

    Article  CAS  PubMed  Google Scholar 

  • Kanchanapoom T (2007) Aromatic diglycosides from Cladogynos orientalis. Phytochemistry 68:692–696

    Article  CAS  PubMed  Google Scholar 

  • Kim HJ, Woo ER, Park H (1994) A novel lignan and flavonoids from Polygonum aviculare. J Nat Prod 57:58–586

    Article  Google Scholar 

  • Komatsu M, Yokoe I, Shirataki Y (1976) Studies on the constituents of Sophora specie. X. Constituents of the root of Sophora japonica L. Yakugaku Zasshi 96:254–257

    CAS  PubMed  Google Scholar 

  • Lima B, Sanchez M, Agüero MB, Tapia A, Palermo JA, Feresin GE (2015) Antibacterial activity of extracts and compounds isolated from the Andean medicinal plant Azorella cryptantha (Clos) Reiche, Apiaceae. Ind Crops Prod 64:152–157

    Article  CAS  Google Scholar 

  • Moharram FA, Marzouk MS, Ibrahim MT, Mabry TJ (2006) Antioxidant galloylated flavonol glycosides from Calliandra haematocephala. Nat Prod Res 20:927–934

    Article  CAS  PubMed  Google Scholar 

  • Mukhamedova KS, Glushenkova A (1997) Phospholipids of ripe Sophora japonica seeds. Chem Nat Compd 33:445–448

    Article  CAS  Google Scholar 

  • Nicoluer G, Thompson AC (1983) Flavonoids of Desmanthus illioensis. J Nat Prod 46:112–114

    Article  Google Scholar 

  • Panthati MK, Rao KNV, Sandhya S, David B (2012) A review on phytochemical, ethnomedical and pharmacological studies on genus Sophora, Fabaceae. Rev Bras Farmacogn 22:1145–1154

    Article  Google Scholar 

  • Park YK, Lee HJ, Choi DH, Kwon YH, Oh JS (2002) Extractives from the bark of Sophora japonica L. Mokchae Konghak 30:42–47

    Google Scholar 

  • Rabe T, van Staden J (2000) Isolation of an antibacterial sesquiterpenoid from Warburgia salutaris. J Ethnopharmacol 73:171–174

    Article  CAS  PubMed  Google Scholar 

  • Rashed K, Ćirić A, Glamočlija J, Soković M (2014) Antibacterial and antifungal activities of methanol extract and phenolic compounds from Diospyros virginiana L. Ind Crops Prod 59:210–215

    Article  CAS  Google Scholar 

  • Samy MN, Sugimoto S, Matsunami K, Otsuka H, Kamel MS (2014) Bioactive compounds from the leaves of Eugenia uniflora. J Nat Prod 7:37–47

    Google Scholar 

  • Semmar N, Fenet B, Gluchoff-Fiasson K, Comte G, Jay M (2002) New flavonol tetraglycosides from Astragalus caprinus. Chem Pharm Bull 50:981–984

    Article  CAS  PubMed  Google Scholar 

  • Shafaghat A, Pirfarshi F, Shafaghatlonbar M (2014) Luteolin derivatives and antimicrobial activity of Achillea tenuifolia Lam. methanol extract. Ind Crops Prod 62:533–536

    Article  CAS  Google Scholar 

  • Shahzadi I, Shah MM (2015) Acylated flavonol glycosides from Tagetes minuta with antibacterial activity. Front Pharmacol 6:195

    Article  PubMed  PubMed Central  Google Scholar 

  • Shirataki Y, Tagaya Y, Yokoe I, Komatsu M (1987) Sophoraside A, a new aromatic glycoside from the roots of Sophora japonica. Chem Pharm Bull 35:1637–1640

    Article  CAS  Google Scholar 

  • Si CL, Kim JK, Bae YS, Li SM (2009a) Phenolic compounds in the leaves of Populus ussuriensis and their antioxidant activities. Planta Med 75:1165–1167

    Article  CAS  PubMed  Google Scholar 

  • Si CL, Wu L, Zhu ZY, Kim JK, Kwon DJ, Bae YS (2009b) Apigenin derivatives from Paulownia tomentosa Steud. var. tomentosa stem barks. Holzforschung 63:440–442

    Article  CAS  Google Scholar 

  • Si CL, Xu J, Kim JK, Bae YS, Liu PT, Liu Z (2011) Antioxidant properties and structural analysis of phenolic glucosides from bark of Populus ussuriensis Kom. Wood Sci Technol 45:5–13

    Article  CAS  Google Scholar 

  • Si CL, Jiang JZ, Liu SC, Hu HY, Ren XD, Yu GJ, Xu GH (2013) A new lignan glycoside and phenolics from the branch wood of Pinus banksiana Lambert. Holzforschung 67:357–363

    CAS  Google Scholar 

  • Si CL, Wu L, Shen T, Huang XF, Du ZG, Ren XD, Luo XG, Hu WC (2014) Recovery of low-molecular mass galloyltannins from agricultural residue of Juglans sigillata dode seed husks and their tyrosinase inhibitory effect. Bioresources 9:2226–2236

    Article  CAS  Google Scholar 

  • Wang JH, Lou FC, Wang YL, Tang YP (2003) A flavonol tetraglycoside from Sophora japonica seeds. Phytochemistry 63:463–465

    Article  PubMed  Google Scholar 

  • Yahagi T, Daikonya A, Kitanaka S (2012) Flavonol acylglycosides from flower of Albizia julibrissin and their inhibitory effects on lipid accumulation in 3T3-L1 cells. Chem Pharm Bull 60:129–136

    Article  CAS  PubMed  Google Scholar 

  • Zhang LB, Lv JL, Chen HL (2013) Japonicasins A and B, two new isoprenylated flavanones from Sophora japonica. Fitoterapia 87:89–92

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Li C, You LJ, Fu X, Chen YS, Luo YQ (2014) Structural identification of compounds from Toona sinensis leaves with antioxidant and anticancer activities. J Funct Foods 10:427–435

    Article  CAS  Google Scholar 

  • Zhao P, Tanaka T, Hirabayashi K, Zhang YJ, Yang CR, Kouno I (2008) Caffeoyl arbutin and related compounds from the buds of Vaccinium dunalianum. Phytochemistry 69:3087–3094

    Article  CAS  PubMed  Google Scholar 

  • Zhou LG, Li D, Wang JG, Liu YS, Wu JY (2007) Antibacterial phenolic compounds from the spines of Gleditsia sinensis Lam. Nat Prod Res 21:283–291

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This project was financially supported by the State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University) (K2013101), Natural Science Foundation of Tianjin City (13JCZDJC29400, 13JCZDJC33700), State Key Laboratory of Pulp & Paper Engineering (201503, 201359), Innovation Foundation for Young Teachers in Tianjin University of Science & Technology (2014CXLG14) and Foundation (201405) of Tianjin Key Laboratory of Marine Resources & Chemistry (Tianjin University of Science & Technology), P.R. China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuan-Ling Si.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Si, CL., An, LL., Xie, DN. et al. New acylated flavonol glycosides with antibacterial activity from root barks of Sophora japonica . Wood Sci Technol 50, 645–659 (2016). https://doi.org/10.1007/s00226-016-0809-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00226-016-0809-1

Keywords

Navigation