Skip to main content
Log in

Characterization of lignin in heartwood, sapwood and bark from Tectona grandis using Py–GC–MS/FID

  • Original
  • Published:
Wood Science and Technology Aims and scope Submit manuscript

Abstract

Sapwood, heartwood and bark of 70-year-old teak trees from an unmanaged stand in East Timor were characterized by pyrolysis (Py–GC–MS/FID). Sapwood and heartwood from teak presented a high lignin content (35.4 and 37.3 % of extractive-free wood) and similar composition. Teak wood is characterized by a GS type of lignin (56.0 % of G-units, 42.2 % of S-units and 1.8 % of H-units in extractive-free wood), with an S/G ratio of 0.8. The major lignin-derived compounds were 4-vinylsyringol (6.6 %), coniferyl alcohol (trans) (4.5 %), coniferaldehyde (2.0 %), 4-vinylguaiacol (1.6 %) and 4-methylguaiacol (1.6 %). Extractive-free teak bark presented 28.0 % of lignin, characterized by a GS type, with 53.3 % G-units, 42.1 % S-units and 4.6 % H-units, with S/G ratio of 0.8. The high lignin content and a composition with predominance of G-units may contribute to the durability and mechanical resistance of teakwood.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Baptista I, Miranda I, Quilhó T, Gominho J, Pereira H (2013) Characterization and fractioning of Tectona grandis bark in view of its valorization as a biorefinery raw material. Ind Crop Prod 50:166–175

    Article  CAS  Google Scholar 

  • Bhat KM, Indira EP (1997) Effect of faster growth on timber quality of teak. Kerala Forest Research Institute Research Report 132, Peechi, Thrissur

  • Bhat KM, Priya PB, Rugmini P (2001) Characterization of juvenile wood in teak. Wood Sci Technol 34:517–532

    Article  CAS  Google Scholar 

  • Bhat KM, Nair KKN, Bhat KV, Muralidharan EM, Sharma JK (2005) Quality timber products of teak from sustainable forest management. In: Proceedings of the international conference on quality timber products of teak sustainable forest management, Peechi, India, 2–5 Dec 2005

  • Chen C, Meyermans H, Burggraeve B, De Rycke RM, Inoue K, De Vleesschauwer V, Steenackers M, Van Montagu MC, Engler GJ, Boerjan WA (2000) Cell-specific and conditional expression of caffeoyl-coenzyme A-3-O-methyltransferase in poplar. Plant Physiol 123:853–867

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dungani R, Bhat I, Khalil HPSA, Naif A, Hermawan D (2012) Evaluation of antitermitic activity of different extracts obtained from Indonesian teakwood (Tectona grandis L.f). Bioresources 7(2):1452–1461

    Article  Google Scholar 

  • Faix O, Meier D (1989) Pyrolytic and hydrogenolytic degradation studies on lignocellulosics, pulps and lignins. Holz Roh Werkst 47:67–72

    Article  CAS  Google Scholar 

  • Faix O, Meier D, Fortman I (1990a) Thermal degradation products of wood. A collection of electron-impact (EI) mass spectra of monomeric lignin derived products. Holz Roh Werkst 48:351–354

    Article  CAS  Google Scholar 

  • Faix O, Meier D, Fortman I (1990b) Thermal degradation products of wood. Gas chromatographic separation and mass spectrometric characterization of monomeric lignin derived products. Holz Roh Werkst 48:281–285

    Article  CAS  Google Scholar 

  • Faix O, Fortman I, Bremer J, Meier D (1991a) Thermal degradation products of wood. Gas chromatographic separation and mass spectrometric characterization of polysaccharide derived products. Holz Roh Werkst 49:213–219

    Article  CAS  Google Scholar 

  • Faix O, Fortman I, Bremer J, Meier D (1991b) Thermal degradation products of wood. A collection of electron-impact (EI) mass spectra of polysaccharide derived products. Holz Roh Werkst 49:299–304

    Article  CAS  Google Scholar 

  • Gafner S, Wolfender J, Nianga M, Stoeckli-Evans H, Hostettmann K (1996) Antifungal and antibacterial naphthoquinones from Newbouldia laevis roots. Phytochemistry 42(5):1315–1320

    Article  CAS  PubMed  Google Scholar 

  • Hepworth DG, Vincent JFV, Schuch W (1998) Using viscoelastic properties of the wood tissue from tobacco plants (Nicotiana tabacum) to comment on the molecular structure of the cell walls. Ann Bot 81:729–734

    Article  Google Scholar 

  • Keogh RM (2013) The teak and its economic importance at worldwide level. In: Camino R, Morales JP (eds) The teak plantations in Latin America: mythos and realities (Las plantaciones de teca en América Latina: mitos y realidades) (in Spanish). Centro Agronómico Tropical de Investigación y Enseñanza (CATIE), Turrialba, pp 8–29

    Google Scholar 

  • Koehler L, Telewski FW (2006) Biomechanical and transgenic wood. Am J Bot 93(10):1433–1438

    Article  CAS  PubMed  Google Scholar 

  • Kokutse A, Brancheriau L, Chaix G (2010) Rapid prediction of shrinkage and fibre saturation point on teak (Tectona grandis) wood based on near-infrared spectroscopy. Ann For Sci 67:403–412

    Article  Google Scholar 

  • Lourenço A, Gominho J, Pereira H (2010) Pulping and delignification of sapwood and heartwood from Eucalyptus globulus. J Pulp Pap Sci 36(3–4):85–90

    Google Scholar 

  • Lourenço A, Gominho J, Marques AV, Pereira H (2013a) Py–GC/MS(FID) assessed behavior of polysaccharides during kraft delignification of Eucalyptus globulus heartwood and sapwood. J Anal Appl Pyrol 101:142–149

    Article  Google Scholar 

  • Lourenço A, Gominho J, Marques AV, Pereira H (2013b) Variation of lignin monomeric composition during kraft pulping of Eucalyptus globulus heartwood and sapwood. J Wood Chem Technol 33:1–18

    Article  Google Scholar 

  • Marques AV, Pereira H (2013) Lignin monomeric composition of corks from the barks of Betula pendula, Quercus suber and Quercus cerris determined by Py–GC–MS/FID. J Anal Appl Pyrol 100:88–94

    Article  CAS  Google Scholar 

  • Meier D, Faix O (1992) Pyrolysis–gas-chromatography–mass spectroscopy. In: Lin SY, Dence CW (eds) Methods in lignin chemistry., Springer series in wood scienceSpringer, New York, pp 177–199

    Chapter  Google Scholar 

  • Miranda I, Sousa V, Pereira H (2011) Wood properties of teak (Tectona grandis) from a mature unmanaged stand in East Timor. J Wood Sci 57:171–178

    Article  CAS  Google Scholar 

  • Miranda I, Gominho J, Mirra I, Pereira H (2013) Fractioning and chemical characterization of barks of Betula pendula and Eucalyptus globulus. Ind Crop Prod 41:299–305

    Article  CAS  Google Scholar 

  • Moya R (2001) Wood properties of teak (Tectona grandis) from Buen Precio Company. Las maderas de plantaciones forestales. ITCR vol 1, pp 1–8 (in Spanish)

  • Moya R, Calvo-Alvarado J (2012) Variation of wood color parameters of Tectona grandis and its relationship with physical environmental factors. Ann For Sci 69:947–959

    Article  Google Scholar 

  • Moya R, Marín JD (2011) Grouping of Tectona grandis (L.f.) clones using wood color and stiffness. New For 42:329–345

    Article  Google Scholar 

  • Moya R, Perez D (2008) Effect of physical and chemical soil properties on physical wood characteristics of Tectona grandis plantations in Costa Rica. J Trop For Sci 20(4):147–155

    Google Scholar 

  • Moya R, Bond B, Quesada H (2014) A review of heartwood properties of Tectona grandis trees from fast-growth plantations. Wood Sci Technol 48:411–433

    Article  CAS  Google Scholar 

  • Nidavani RB, Mahalakshmi AM (2014) Teak (Tectona grandis Linn.): a renowned timber plant with potential medicinal values. Inter J Pharm Pharm Sci 6(1):48–54

    Google Scholar 

  • Pereira H, Graça J, Rodrigues JC (2003) Wood chemistry in relation to quality. Cap. 3. In: Barnett JR, Jeronimidis G (eds) Wood quality and its biological basis. Blackwell, Oxford, pp 53–83

    Google Scholar 

  • Polato R, Laming PB, Sierra-alvarez R (2003) Assessment of some wood characteristics of teak of Brazilian origin. In: Bhat KM, Nair KKN, Bhat KV, Muralidharan EM, Sharma JK (eds) Quality timber products of teak from sustainable forest management. Proceedings of the international conference on quality timber products of teak sustainable forest management, Peechi, India, 2–5 Dec 2003, pp 257–265

  • Pruyn ML, Ewers BJ III, Telewski FW (2000) Thigmomorphogenesis: changes in the morphology and mechanical properties of two Populus hybrids in response to mechanical perturbation. Tree Physiol 20:535–540

    Article  PubMed  Google Scholar 

  • Raiskila S, Pulkkinen M, Laakso T, Fagerstedt K, Löija M, Mahlberg R, Paajanen L, Ritschkoff A, Saranpää P (2007) FTIR spectroscopic prediction of Klason and acid soluble lignin variation in Norway spruce cutting clones. Silva Fenn 41(2):351–371

    Article  Google Scholar 

  • Rodrigues J, Graça J, Pereira H (2001) Influence of tree eccentric growth on syringyl/guaiacyl ratio of Eucalyptus globulus wood lignin accessed by analytical pyrolysis. J Anal Appl Pyrol 58–59:481–489

    Article  Google Scholar 

  • Rousset P, Lapierre C, Pollet B, Quieino W, Perre P (2009) Effect of severe thermal treatment on spruce and beech wood lignins. Ann For Sci 66:110–117

    Article  Google Scholar 

  • Santos RB, Capanema EA, Balakshin MY, Chang H, Jameel H (2011) Effect of hardwoods characteristics on kraft pulping process: emphasis on lignin structure. BioResources 6(4):3623–3637

    CAS  Google Scholar 

  • Solorzano S, Moya R, Murillo O (2012) Early prediction of basic density, shrinkage, presence of growth stress, and dynamic elastic modulus based on the morphological tree parameters of Tectona grandis. J Wood Sci 58:290–299

    Article  Google Scholar 

  • Sousa VB, Cardoso S, Quilhó T, Pereira H (2012a) Growth rate and ring width variability of teak, Tectona grandis (Verbenaceae) in an unmanaged forest in East Timor. Rev Biol Trop 60(1):483–494

    PubMed  Google Scholar 

  • Sousa VB, Cardoso S, Miranda I, Pereira H (2012b) Overview of Quercus faginea characteristics and growth tendency. IUFRO conference Division 5 Forest Products, Estoril, Lisbon, Portugal, 8–13 July

  • Stewart D (2008) Lignin as a base material for materials applications: chemistry, applications and economics. Ind Crop Prod 27:202–207

    Article  CAS  Google Scholar 

  • Thulasidas PK, Bhat KM (2007) Chemical extractive compounds determining the brown-rot decay resistance of teak wood. Holz Roh Werkst 65:121–124

    Article  CAS  Google Scholar 

  • Wilson BF, Archer RR (1979) Tree design: some biological solutions to mechanical problems. Bioscience 29(5):293–298

    Article  Google Scholar 

  • Windeisen E, Klassen A, Wegener G (2003) On the chemical characterization of plantation teakwood from Panama. Holz Roh Werkst 61:416–418

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The sampling of teak trees and wood transportation from East Timor to Portugal was only possible due to the cooperation of the Programme for the Support of Rural Development in East Timor (PADRTL) from the Portuguese Government. We are grateful for all the help from the local field team, namely Nuno Moreira, Paulo Maio and Filipe Suspiro. Financial support for the laboratorial analysis was given by research funding of FCT (Fundação para a Ciência e a Tecnologia) to CEF (Centro de Estudos Florestais) under its Strategic Project (PEst-OE/AGR/UI0239/2014) and two projects (PTDC/AGR-CFL/110419/2009 and PTDC/AGR-FOR/3872/2012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Lourenço.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lourenço, A., Neiva, D.M., Gominho, J. et al. Characterization of lignin in heartwood, sapwood and bark from Tectona grandis using Py–GC–MS/FID. Wood Sci Technol 49, 159–175 (2015). https://doi.org/10.1007/s00226-014-0684-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00226-014-0684-6

Keywords

Navigation