Skip to main content
Log in

The influence of thermal-hydro-mechanical processing on chemical characterization of Tsuga heterophylla

  • Original
  • Published:
Wood Science and Technology Aims and scope Submit manuscript

Abstract

Viscoelastic thermal compression (VTC) is a type of thermal-hydro-mechanical (THM) processing that requires only a short processing time. THM processing causes some chemical transformations, the nature and extent of hydro-thermolysis depends on the special treatment conditions and the chemical nature of wood species. In the present study, the chemical transformations of the cell wall components and wood extractives during VTC treatment were investigated, and correlation between chemical characterizations and observed property changes was analyzed. For this purpose, the content of extractives and pH values were determined, and FTIR analysis was performed on extractable substances, extract-free wood, holocellulose, α-cellulose and lignin. Two temperatures and two steam exposure times were adopted to determine the influence of processing conditions on chemical characterization of Tsuga heterophylla. The results revealed that THM treatment caused a series of chemical reactions in extractives. Treatment temperature and conditioning time have significant influence on chemical changes of extractives. For all of the VTC treatments used in this study, no significant changes occurred in the lignin and α-cellulose components. The only significant chemical changes occurred in the hemicelluloses, which were primarily reduction of carbonyl and acetyl functional groups. This study also confirmed that the chemical transformation of wood correlates with property changes of VTC wood.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ajuong E-MA, Redington M (2004) Fourier transform infrared analyses of bog and modern oak wood (Quercuspetraea) extractives. Wood Sci Technol 38:181–190

    Article  CAS  Google Scholar 

  • ASTM D1104-56 (1978) Method of test for holocellulose in wood (Withdrawn 1985)

  • ASTM D 1106-96 (2007) Standard test method for acid-insoluble lignin in wood

  • ASTM D1110-84 (2007) Standard test methods for water solubility of wood

  • Bobleter O, Binder H (1980) Dynamischer hydrothermaler Abbau von Holz. Holzforschung 34:48–51

    Article  CAS  Google Scholar 

  • Bourgois J, Guyonnet R (1988) Characterization and analysis of torrified wood. Wood Sci Technol 22:143–155

    Article  CAS  Google Scholar 

  • Carrasco F, Roy C (1992) Kinetic study of dilute-acid prehydrolysis of xylan-containing biomass. Wood Sci Technol 26:189–208

    CAS  Google Scholar 

  • Diouf PN, Stevanovic T, Cloutier A, Fang CH, Blanchet P, Koubaa A, Mariotti N (2011) Effects of thermo-hygro-mechanical densification on the surface characteristics of trembling aspen and hybrid poplar wood veneers. Appl Surf Sci 257:3558–3564

    Article  CAS  Google Scholar 

  • Esteves B, Graca J, Pereira H (2008) Extractive composition and summative chemical analysis of thermally treated eucalypt wood. Holzforschung 62:344–351

    Article  CAS  Google Scholar 

  • Esteves B, Videria R, Pereira H (2011) Chemistry and ecotoxicity of heat-treated pine wood extractives. Wood Sci Technol 45:661–676

    Article  CAS  Google Scholar 

  • Faix O (1991) Classification of lignins from different botanical origins by FTIR spectroscopy. Holzforschung 45:21–27

    Article  CAS  Google Scholar 

  • Fang CH, Cloutier A, Blanchet P, Koubaa A, Mariotti N (2011) Densification of wood veneers combined with oil-heat treatment. Part I: Dimensional stability. BioResources 6(1):373–385

    CAS  Google Scholar 

  • Fang CH, Mariotti N, Cloutier A, Koubaa A, Blanchet P (2012a) Densification of wood veneers by compression combined with heat and steam. Eur J Wood Prod 70:155–163

    Article  CAS  Google Scholar 

  • Fang CH, Cloutier A, Blanchet P, Koubaa A (2012b) Densification of wood veneers combined with oil-heat treatment. Part II: hygroscopicity and mechanical properties. BioResources 7(1):925–935

    CAS  Google Scholar 

  • Fang CH, Blanchet P, Cloutier A, Barbuta C (2012c) Engineered wood flooring with densified surface layer for heavy-duty use. BioResources 7(4):5843–5854

    Google Scholar 

  • Fengel D, Wegener G (2003) Wood chemistry, ultrastructure, reactions. Oberwinter: Verl. Kessel

  • Fukuta S, Takasu Y, Sasaki Y, Hirashima Y (2007) Compressive deformation process of Japanese cedar (Cryptomeria japonica). Wood Fiber Sci 39(4):548–555

    CAS  Google Scholar 

  • GB-T 744-2004 (2004) Pulps-determination of α-cellulose

  • Gong M, Lamason C, Li L (2010) Interactive effect of surface densification and post-heat-treatment on aspen wood. J Mater Process Technol 210(2):293–296

    Article  Google Scholar 

  • Hill CAS (2006) Wood modification: chemical, thermal and other processes. In: Stevens C (ed), John Wiley & Sons Ltd., Chichester

  • Hsu WE, Schwald W, Schwald J, Shields JA (1988) Chemical and physical changes required for producing dimensionally stable wood-based composites. Wood Sci Technol 22:281–289

    Article  CAS  Google Scholar 

  • Inoue M, Sekino N, Morooka T, Rowell RM, Norimoto M (2008) Fixation of compressive deformation in wood by pre-steaming. J Trop Forest Sci 20(4):273–281

    Google Scholar 

  • Jennings JD, Zink-Sharp A, Kamke FA, Frazier CE (2005) Properties of compression densified wood. Part 1: bond performance. J Adh Sci Tech 19(13–14):1249–1261

    Article  CAS  Google Scholar 

  • Jennings JD, Zink-Sharp A, Frazier CE, Kamke FA (2006) Properties of compression densified wood. Part 2: surface energy. J Adh Sci Tech 20(4):335–344

    Article  CAS  Google Scholar 

  • Kamdem P, Pizzi A, Triboulot MC (2000) Heat treated timber potentially toxic side products presence and wood cell wall degradation. Holz RohWerkst 58:253–257

    Article  CAS  Google Scholar 

  • Kamke FA, Kutnar A (2010) Transverse compression behavior of wood in saturated steam at 150–170°C. Wood Fiber Sci 42(3):377–387

    CAS  Google Scholar 

  • Kamke FA, Rathi VM (2009) Modified hybrid poplar for structural composites//4th European Conference on Wood Modification. Stockholm, Sweden, April 27–29, 2009. pp 397–400

  • Kamke FA, Rathi VM (2011) Apparatus for viscoelastic thermal compression of wood. Eur J Wood Prod 69(3):483–487

    Article  Google Scholar 

  • Klauditz W, Stegmann G (1955) Beiträgezur kenntnis des ab-laufes und der wirkungthermischer reaktionenbei der bil-dung von holzwerkstoffen. Holz Roh-Werkst 13:434–440

    Article  CAS  Google Scholar 

  • Kline LM, Hayes DG, Womac AR, Labbé N (2010) Simplified determination of lignin content in hard and soft woods via UV-spectrophotometric analysis of biomass dissolved in ionic liquids. BioResources 5(3):1366–1383

    CAS  Google Scholar 

  • Kutnar A, Kamke FA, Sernek M (2008a) The mechanical properties of densified VTC wood relevant for structural composites. Holz Roh Werkst 66(6):439–446

    Article  CAS  Google Scholar 

  • Kutnar A, Kamke FA, Petrič M, Sernek M (2008b) The influence of viscoelastic thermal compression on the chemistry and surface energetics of wood. Colloids Surf A: Physicochem Eng Aspects 329:82–86

    Article  CAS  Google Scholar 

  • Kutnar A, Humar M, Kamke KA, Sernek M (2011) Fungal decay of viscoelastic thermal compressed (VTC) wood. Eur J Wood Prod 69:325–328

    Article  Google Scholar 

  • Li L, Gong M, Yuan N, Li D (2013) An optimal thermo-hydro-mechanical densification (THM) process for densifying balsam fir wood. BioResources 8(3):3967–3981

    Google Scholar 

  • Liu H, Kamke FA, Guo K (2013) Integrated drying and thermo-hydro-mechanical modification of western hemlock veneer. Eur J Wood Prod 71:173–181

    Article  CAS  Google Scholar 

  • Ma GM, Jia N, Zhu JF, Li SM, Peng F, Sun RC (2012) Isolation and characterization of hemicelluloses extracted by hydrothermal pretreatment. Bioresour Technol 114:677–683

    Article  CAS  PubMed  Google Scholar 

  • Militz H (2002) Heat treatment technologies in Europe: scientific background and technological state of art. In: Enhancing the durability of lumber and engineered wood products, FPS/Madison US, Conference, Florida, pp 11–13

  • Naumann D, Labischinski H, Giesbrecht P (1991) The characterization of microorganisms by Fourier transform infrared spectroscopy (FTIR). In: Nelson WH (ed) Modern techniques for rapid microbiological analysis. VCH, New York, pp 43–96

    Google Scholar 

  • Navi P, Sandberg D (2012) Thermo-hydro-mechanical processing of wood. EPFL Press, Lausanne, Switzerland, p 376

    Google Scholar 

  • Nguila IG, Petrissans M, Gerardin P (2007) Chemical reactivity of heat-treated wood. Wood Sci Technol 41:157–168

    Article  Google Scholar 

  • Nuopponen M, Vuorinen T, Jämsä S, Viitaniemi P (2003) The effects of a heat treatment on the behaviour of extractives in softwood studied by FTIR spectroscopic methods. Wood Sci Technol 37:109–115

    Article  CAS  Google Scholar 

  • Nuopponen M, Vuorinen T, Jamsä S, Viitaniemi P (2004) Thermal modifications in softwood studied by FT-IR and UV resonance Raman spectroscopies. J Wood Chem Technol 24:13–26

    Article  CAS  Google Scholar 

  • TAPPI T212 om-2002 (2002) One percent sodium hydroxide solubility of wood and pulp

  • TAPPI T264 cm-2007 (2007) Preparation of wood for chemical analysis

  • TAPPI T204 cm-97 (2007) Solvent extractives of wood and pulp

  • Rumana R, Rosemarie LH, Reiner F, Andrea P (2010) FTIR spectroscopy, chemical and histochemical characterisation of wood and lignin of five tropical timber wood species of the family of Dipterocarpaceae. Wood Sci Technol 44:225–242

    Article  Google Scholar 

  • Sivonen H, Maunu S, Sundholm F, Jämsa S, Viitaniemi P (2002) Magnetic resonance studies of thermally modified wood. Holzforschung 56:648–654

    Article  CAS  Google Scholar 

  • Tang X, Zhao G, Nakao T (2004) Changes of chemical composition and crystalline of compressed chinese fir wood in heating fixation. For Stud China 6(4):39–44

    Article  CAS  Google Scholar 

  • Telmo C, Lousada J (2011) The explained variation by lignin and extractive contents on higher heating value of wood. Biomass Bioenergy 35:1663–1667

    Article  CAS  Google Scholar 

  • Thulasidas PK, Bhat KM (2007) Chemical extractive compounds determining the brown-rot decay resistance of teakwood. Holz Roh Werkst 65:121–124

    Article  CAS  Google Scholar 

  • Tjeerdsma BF, Militz H (2005) Chemical changes in hydrothermal treated wood: FTIR analysis of combined hydrothermal and dry heat-treated wood. Holz Roh- Werkst 63:102–111

    Article  CAS  Google Scholar 

  • Tjeerdsma BF, Boonastra M, Pizzi A, Tekely P, Militz H (1998) Characterization of thermally modified wood: molecular reasons for wood performance improvement. Holz Roh Werkst 56:149–153

    Article  CAS  Google Scholar 

  • Windeisen E, Bächle H, Zimmer B, Wegener G (2008) Relations between chemical changes and mechanical properties of thermally treated wood. 10th EWLP, Stockholm, Sweden, August 25–28, pp 773–778

Download references

Acknowledgments

The authors are grateful for the funding support from the State Scholarship Fund from China Scholarship Council (CSC) and Oregon Built Environment and Sustainable Technology Center, Oregon State University (Corvallis, OR, USA). Technical assistance from Chuan Li, Darrell Lowe, Jesse Paris and Adam Scouse is appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kangquan Guo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, H., Shang, J., Chen, X. et al. The influence of thermal-hydro-mechanical processing on chemical characterization of Tsuga heterophylla . Wood Sci Technol 48, 373–392 (2014). https://doi.org/10.1007/s00226-013-0608-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00226-013-0608-x

Keywords

Navigation