Skip to main content
Log in

Permeability of Tectona grandis L. as affected by wood structure

  • Original
  • Published:
Wood Science and Technology Aims and scope Submit manuscript

Abstract

This experiment describes some anatomical features of Tectona grandis L. relating to the variation of liquid permeability in radial and longitudinal directions. Safranine aqueous solution was used to measure the permeability for its brilliant color and staining properties. Even in presence of abundant rays, penetration depth of liquid in radial direction was found very low in comparison with axial flow. Herein ray length and perimeter of cross-sectional area, interparenchymatous pit number and diameter determined the radial permeability. On the other hand, vessel length and diameter, intervessel pit size, and fiber length affected the longitudinal flow of liquids. Following a go-stop-go cycle, penetration speed of liquid decreased over time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahmed SA, Chun SK (2007) Descriptions of the wood anatomy and safranine impregnation in Gmelina arborea Roxb. from Bangladesh. J Korea Furnit Soc 18(2):100–105

    Google Scholar 

  • Ahmed SA, Chun SK (2009) Observation of liquid permeability related to anatomical characteristics in Samanea saman. Turk J Agric For 33(2):155–163

    Google Scholar 

  • Ahmed SA, Chong SH, Chun SK, Park BS (2006) Ray parenchyma and ray tracheid structure of four Korean pine wood species. J Korea Furnit Soc 17(4):101–107

    Google Scholar 

  • Ahmed SA, Hong SD, Chun SK (2007) Essential oil penetration depth in Prunus sargentii Rehder. J Korea Furnit Soc 18(4):307–311

    Google Scholar 

  • Banks WB (1981) Addressing the problem of non-steady state liquid flow in wood. Wood Sci Technol 15(3):171–177

    Article  CAS  Google Scholar 

  • Bao F, Lu J, Avramidis S (1999) On the permeability of main wood species in China. Holzforschung 53(4):350–354

    Article  CAS  Google Scholar 

  • Bao F, Lu J, Zhao J (2000) Effect of bordered pit torus position on permeability in Chinese yezo spruce. Wood Fiber Sci 33(2):193–199

    Google Scholar 

  • Barnett JR (1982) Plasmodesmata and pit development in secondary xylem elements. Planta 155(3):251–260

    Article  Google Scholar 

  • Behr EA, Sachs IB, Kukachka BF, Blew JO (1969) Microscopic examination of pressure treated wood. Forest Prod J 19(8):30–40

    Google Scholar 

  • Bolton AJ, Petty JA (1978) A model describing axial flow of liquid through conifer wood. Wood Sci Technol 12(1):37–48

    Article  Google Scholar 

  • Carlquist S (2007) Bordered pits in ray cells and axial parenchyma: the histology of conduction, storage, and strength in living wood cells. Botanical J Linnean Soc 153(2):157–168

    Article  Google Scholar 

  • Choong ET, Tesoro FO (1989) Relationship of capillary pressure and water saturation in wood. Wood Sci Technol 23(2):139–150

    Google Scholar 

  • Domec JC, Gartner BL (2002) How do water transport and water storage differ in coniferous earlywood and latewood? J Exp Bot 53(379):2369–2379

    Article  PubMed  CAS  Google Scholar 

  • Dute RR, Rushing AE (1990) Torus structure and development in the wood of Ulmus alata Michx., Celtis laevigata Wild., and Celtis occidentalis L. IAWA J 11(1):71–83

    Google Scholar 

  • Eaton RA, Hale MD (1993) Wood: decay pests and protection. Chapman & Hall, London

    Google Scholar 

  • Essiamah S, Eschrich W (1985) Changes of starch content in the storage tissues of deciduous tree during winter and spring. IAWA J 6(2):97–106

    Google Scholar 

  • Fujii T, Lee SJ, Kuroda N, Suzuki Y (2001) Conductive function of intervessel pits through a growth ring boundary of Machilus thunbergii. IAWA J 22(1):1–14

    Google Scholar 

  • Furuno T, Imamamura Y, Kajita H (2004) The modification of wood by treatment with low molecular weight phenol-formaldehyde resin: a properties enhancement with neutralized phenolic-resin and resin penetration into wood cell wall. Wood Sci Technol 37(5):349–361

    Article  CAS  Google Scholar 

  • Hacke UG, Sperry JS, Pittermann J (2004) Analysis of circular bordered pit function ii. gymnosperm tracheids with torus-margo pit membranes. Am J Bot 91(3):386–400

    Article  PubMed  Google Scholar 

  • IAWA Committee (1989) IAWA list of microscopic features of hardwood identification. IAWA Bull ns 10(3):219–332

    Google Scholar 

  • Kamke FA, Lee JN (2005) Adhesive penetration in wood-a review. Wood Fiber Sci 39(2):205–220

    Google Scholar 

  • Keith CT, Chauret G (1988) Anatomical studies of CCA penetration associated with conventional (tooth) and with micro (needle) incising. Wood Fiber Sci 20(2):197–208

    CAS  Google Scholar 

  • Kitin P, Fujii T, Abe H, Takata K (2009) Anatomical features that facilitate radial flow across growth rings and from xylem to cambium in Cryptomeria japonica. Ann Bot 103(7):1145–1157

    Google Scholar 

  • Leal S, Sousa VB, Pereira H (2007) Radial variation of vessel size and distribution in cork oak wood (Quercus suber L.). Wood Sci Technol 41(4):339–350

    Article  CAS  Google Scholar 

  • Murmanis L, Chudnoff M (1979) Lateral flow in beech and birch as revealed by the electron microscope. Wood Sci Technol 13(2):79–87

    Article  CAS  Google Scholar 

  • Olsson T, Megnis M, Varna J, Lindberg H (2001) Study of the transverse liquid flow paths in pine and spruce using scanning electron microscopy. J Wood Sci 47(4):282–288

    Article  Google Scholar 

  • Panshin AJ, DeZeeuw C (1974) Textbook of wood technology. McGraw-Hill, New York, p 478

    Google Scholar 

  • Petty JA (1981) Fluid flow through the vessels and intervascular pits of sycamore wood. Holzforschung 35(5):213–216

    Article  Google Scholar 

  • Sano Y (2005) Inter- and interspecific structural variation among intervascular pit membranes, as revealed by field-emission scanning electron microscopy. Am J Bot 92(7):1077–1084

    Article  PubMed  Google Scholar 

  • Sano Y, Jansen S (2006) Perforated pit membranes in imperforated tracheary elements of some angiosperm. Ann Bot 97(6):1046–1053

    Article  Google Scholar 

  • Scheikl M, Dunky M (1998) Measurement of dynamic and static contact angles on wood for the determination of its surface tension and penetration of liquids into the wood surface. Holzforschung 52(1):89–94

    Article  CAS  Google Scholar 

  • Schmid R, Machado RD (1968) Pit membranes in hardwoods-fine structure and development. Protoplasma 66(1–2):185–204

    Article  Google Scholar 

  • Siau JF (1984) Transport process in wood. Springer, Berlin

    Google Scholar 

  • Siau JF (1995) Wood: influence of moisture on physical properties. Virginia Polytechnic Institute and State University, Blacksburg, 227 pp

    Google Scholar 

  • Skaar C (1972) Water in wood. Syracuse University Press, New York, 19 pp

    Google Scholar 

  • Smith WB, Abdullah N, Herdman D, DeGroot RC (1996) Preservative treatment of red maple. Forest Prod J 46(3):35–41

    CAS  Google Scholar 

  • Thomas RJ (1976) Anatomical features affecting liquid permeability in three hardwood species. Wood Fiber 7(4):256–263

    Google Scholar 

  • Wardrop AB, Davies GW (1961) Morphological factors relating to the penetration of liquids into wood. Holzforschung 15(5):129–141

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Korean Institute of Environmental Science and Technology and the Institute of Forest Science, Kangwon National University, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Su Kyoung Chun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahmed, S.A., Chun, S.K. Permeability of Tectona grandis L. as affected by wood structure. Wood Sci Technol 45, 487–500 (2011). https://doi.org/10.1007/s00226-010-0335-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00226-010-0335-5

Keywords

Navigation