Skip to main content
Log in

Antibacterial and antifungal activities of Myracrodruon urundeuva heartwood

  • Original
  • Published:
Wood Science and Technology Aims and scope Submit manuscript

Abstract

The aim of this work was to isolate a lectin from Myracrodruon urundeuva heartwood and to evaluate its antimicrobial activity against bacteria and fungi that attack plants, including woods. The lectin was isolated from heartwood through affinity chromatography on a chitin column monitored by hemagglutination assay. The lectin inhibited Gram-negative and Gram-positive bacteria and was more effective than antifungal Cercobin in growth inhibition of phytopathogenic fungi. The detected antimicrobial activity reveals the possible role of the lectin in the resistance of M. urundeuva heartwood against deteriorative biological agents. The M. urundeuva lectin is the first bioactive peptide found in heartwood, probably stored as a chemical protection against biodegradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

CFU:

Colony forming units

F1 :

40–60% fraction

HA:

Hemagglutinating activity

MAC:

Minimal agglutinating concentration

MBC:

Minimal bactericide concentration

MIC:

Minimal inhibitory concentration

NA:

Nutrient Agar medium

NB:

Nutrient Broth medium

SHA:

Specific hemagglutinating activity

YNB:

Yeast nitrogen base medium

References

  • Bauer AW, Kirby WMM, Sherrie JC, Turck M (1966) Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol 45:493–496

    PubMed  CAS  Google Scholar 

  • Ciopraga J, Gozia O, Tudor R, Brezuica L, Doyle RJ (1999) Fusarium sp. growth inhibition by wheat germ agglutinin. Biochim Biophys Acta 1428:424–432

    PubMed  CAS  Google Scholar 

  • Clausen CA (1995) Bacterial associations with decaying wood: a review. Int Biodeterior Biodegradation 37:101–107

    Google Scholar 

  • Cother EJ, Dowling V (1986) Bacteria associated with internal breakdown of onion bulbs and their role in disease expression. Plant Pathol 35:329–336

    Google Scholar 

  • Courvalin P, Goldstein F, Philippon A, Sirot J (1988) L’antibiogramme. MPC Vigot, Paris

    Google Scholar 

  • Cunico MM, Carvalho JLS, Silva VC, Montrucchio DP, Kerber VA, Grigoletti Júnior A, Auer CG, Miguel MD, Miguel OG (2004) Avaliação antifúngica de extratos obtidos de Ottonia martiana Miq. (Piperaceae) sobre três fitopatógenos. Arq Inst Biol 71:141–143

    Google Scholar 

  • Di Pietro A, Madrid MP, Caracuel Z, Delgado-Jarana J, Roncero MIG (2003) Fusarium oxysporum: exploring the molecular arsenal of a vascular wilt fungus. Mol Plant Pathol 4:315–325

    CAS  Google Scholar 

  • Fakhoury AM, Woloshuk CP (2001) Inhibition of growth of Aspergillus flavus and fungal α-amylases by a lectin-like protein from Lablab purpureus. Mol Plant Microbe Interact 14:955–961

    PubMed  CAS  Google Scholar 

  • Freire MGM, Gomes VM, Corsini RE, Machado OLT, De Simone SG, Novello JC, Marangoni S, Macedo MLR (2002) Isolation and partial characterization of a novel lectin from Talisia esculenta seeds that interferes with fungal growth. Plant Physiol Biochem 40:61–68

    Article  CAS  Google Scholar 

  • Gaidamashvili M, van Staden J (2002) Interaction of lectin-like proteins of South African medicinal plants with Staphylococcus aureus and Bacillus subtilis. J Ethnopharmacol 80:131–135

    PubMed  CAS  Google Scholar 

  • Gozia O, Ciopraga J, Bentia T, Lungu M, Zamfirescu I, Tudor R, Roseanu A, Nitu F (1993) Antifungal properties of lectin and new chitinases from potato tubers. C R Acad Sci III 316:788–792

    PubMed  CAS  Google Scholar 

  • Huang X, Xie WJ, Gong ZZ (2000) Characterization and antifungal activity of a chitin binding protein from Ginkgo biloba. FEBS Lett 478:123–126

    PubMed  CAS  Google Scholar 

  • Jacobs MJ, Bugbee WM, Gabrielson DA (1985) Enumeration, location, and characterization of endophytic bacteria within sugar beet roots. Can J Bot 63:1262–1265

    Article  Google Scholar 

  • Khan MR, Olomoso AD, Barewai Y (2006) Antimicrobial activity of the Maniltoa schefferi extracts. Fitoterapia 77:324–326

    PubMed  CAS  Google Scholar 

  • Lam YM, Wang HX, Ng TB (2000) A robust cysteine-deficient chitinase-like antifungal protein from inner shoots of the edible chive Allium tuberosum. Biochem Biophys Res Commun 279:74–80

    PubMed  CAS  Google Scholar 

  • Lis H, Sharon N (1981) Lectins in higher plants. In: Marcus A (ed) The biochemistry of plants: a comprehensive treatise, vol. 6. Academic Press, New York, pp 371–447

  • Lowry OH, Rosembrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • Mainieri C, Chimelo JP (1989) Fichas de características de madeiras brasileiras. IPT, São Paulo

    Google Scholar 

  • Morais SAL, Nascimento EA, Queiroz CRAA (1999) Studies on polyphenols of Myracrodruon urundeuva wood. J Braz Chem Soc 10:447–452

    CAS  Google Scholar 

  • Oliveira MDL, Andrade CAS, Santos-Magalhães NS, Coelho LCBB, Teixeira JA, Carneiro-da-Cunha MG, Correia MTS (2008) Purification of a lectin from Eugenia uniflora L. seeds and its potential antibacterial activity. Lett Appl Microb 46:371–376

    Article  CAS  Google Scholar 

  • Omar S, Lemonnier B, Jones N, Ficker C, Smith ML, Neema C, Towers GHN, Goel K, Arnason JT (2000) Antimicrobial activity of extracts of eastern North American hardwood trees and relation to traditional medicine. J Ethnopharmacol 73:161–170

    PubMed  CAS  Google Scholar 

  • Ordóñez RM, Ordóñez AAL, Sayago JE, Moreno MIN, Isla MI (2006) Antimicrobial activity of glycosidase inhibitory protein isolated from Cyphomandra betacea Sendt. fruit. Peptides 27:1187–1191

    Article  PubMed  CAS  Google Scholar 

  • Paiva PMG, Coelho LCBB (1992) Purification and partial characterization of two lectin isoforms from Cratylia mollis Mart. (camaratu bean). Appl Biochem Biotechnol 36:113–118

    Article  CAS  Google Scholar 

  • Paes JB, Morais VM, Lima CR (2002) Resistência das madeiras de aroeira (Myracrodruon urundeuva), cássia (Senna siamea) e ipê (Tabebuia impetiginosa) a fungos e cupins xilófagos em condições de laboratório. Flor Amb 9:135–144

    Google Scholar 

  • Ratanapo S, Ngamjunyaporn W, Chulavatnatol M (2001) Interaction of a mulberry leaf lectin with a phytopathogenic bacterium, P. syringae pv mori. Plant Sci 160:739–744

    Article  PubMed  CAS  Google Scholar 

  • Santos AFS, Argolo ACC, Coelho LCBB, Paiva PMG (2005) Detection of water soluble lectin and antioxidant component from Moringa oleifera seeds. Water Res 39:975–980

    PubMed  CAS  Google Scholar 

  • Selitrennikoff CP (2001) Antifungal proteins. Appl Environ Microbiol 67:2883–2894

    PubMed  CAS  Google Scholar 

  • Silva AC (2002) Madeiras da Amazônia: características gerais, nome vulgar e usos. Sebrae, Manaus

  • Tasumi S, Yang W, Usami T, Tsutsui S, Ohira T, Kawazoe I, Wilder MN, Aida K, Suzuki Y (2004) Characteristics and primary structure of galectin in the skin mucus of the Japanese eel, Anguilla japonica. Dev Comp Immunol 28:325–335

    PubMed  CAS  Google Scholar 

  • Trindade MB, Lopes JLS, Soares-Costa A, Monteiro-Moreira AC, Moreira RA, Oliva MLV, Beltramini LM (2006) Structural characterization of novel chitin-binding lectins from the genus Artocarpus and their antifungal activity. Biochim Biophys Acta 1764:146–152

    PubMed  CAS  Google Scholar 

  • Van Damme EJM, Willems P, Torrekens S, Van Leuven F, Peumans WJ (1993) Garlic (Allium sativum) chitinases: characterization and molecular cloning. Physiol Plant 87:177–186

    Google Scholar 

  • Van den Bergh KP, Rouge P, Proost P, Coosemans J, Krouglova T, Engelborghs Y, Peumans WJ, Van Damme EJ (2004) Synergistic antifungal activity of two chitin-binding proteins from spindle tree (Euonymus europaeus L.). Planta 219:221–232

    PubMed  Google Scholar 

  • Vergauwen R, Van Leuven F, Van Laere A (1998) Purification and characterization of strongly chitin-binding chitinase from salicylic acid-treated leek (Allium porrum). Physiol Plant 104:175–182

    CAS  Google Scholar 

  • Wang X, Bunkers GJ (2000) Potent heterologous antifungal proteins from cheeseweed (Malva parviflora). Biochem Biophys Res Commun 279:669–673

    Article  PubMed  CAS  Google Scholar 

  • Wang HX, Ng TB (2003) Purification of castamollin, a novel antifungal protein from chinese chestnuts. Protein Expr Purif 32:44–51

    Article  PubMed  CAS  Google Scholar 

  • Ye XY, Ng TB (2002) A new antifungal protein and a chitinase with prominent macrophage-stimulating activity from seeds of Phaseolus vulgaris cv. pinto. Biochem Biophys Res Commun 290:813–819

    PubMed  CAS  Google Scholar 

  • Ye X, Ng TB (2005) A chitinase with antifungal activity from the mung bean. Protein Expr Purif 40:230–236

    PubMed  CAS  Google Scholar 

  • Ye XY, Wang HX, Ng TB (2000) Dolichin, a new chitinase-like antifungal protein isolated from field beans (Dolichos lablab). Biochem Biophys Res Commun 269:155–159

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors express their gratitude to the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and to the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for research grants. Authors are deeply grateful to Maria Barbosa Reis da Silva (for the technical assistance) and to Msc. Gonçalo Mendes da Conceição (for the identification of the botanical material).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrícia M. G. Paiva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sá, R.A., Gomes, F.S., Napoleão, T.H. et al. Antibacterial and antifungal activities of Myracrodruon urundeuva heartwood. Wood Sci Technol 43, 85–95 (2009). https://doi.org/10.1007/s00226-008-0220-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00226-008-0220-7

Keywords

Navigation