Skip to main content
Log in

The effect of axial strain on crystalline cellulose in Norway spruce

  • Original
  • Published:
Wood Science and Technology Aims and scope Submit manuscript

Abstract

The effect of strain on dry, clear Norway spruce (Picea abies [L.] Karst.) wood was studied by tensile testing along the cell axis and by in situ X-ray diffraction measurements. The mean microfibril angle (MFA) was initially 3–12 degrees and did not decrease due to strain. Based on the positions of the reflections 200 and 004 of crystalline cellulose, cellulose chains elongated and the distance between the hydrogen bonded sheets of chains decreased due to the strain. The elongation of the unit cell parallel to the cellulose chains was twice as high in juvenile wood as in mature wood. The (X-ray) Poisson ratio ν ca for crystalline cellulose in Norway spruce was calculated from the deformation of the unit cell. The average ν ca of earlywood was 0.28 ± 0.10 in juvenile wood and 0.38 ± 0.23 in mature wood. In latewood, the average ν ca was 0.48 ± 0.10 in juvenile wood and 0.82 ± 0.11 in mature wood. The average ν ca values were not directly correlated to the crystallite dimensions or to the mean MFA in juvenile and mature earlywood and latewood. The results show that the amorphous matrix has a definite effect on the deformation of cellulose crystallites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Åkerholm M, Salmén L (2001) Interactions between wood polymers studied by dynamic FT-IR spectroscopy. Polymer 42:963–969

    Article  Google Scholar 

  • Åkerholm M, Salmen L (2003) The oriented structure of lignin and its viscoelastic properties studied by static and dynamic FT-IR spectroscopy. Holzforschung 57:459–465

    Article  Google Scholar 

  • Andersson S, Serimaa R, Paakkari T, Saranpää P, Pesonen E (2003) Crystallinity of wood and the size of cellulose crystallites in Norway spruce (Picea abies). J Wood Sci 49:531–537

    Google Scholar 

  • Andersson S, Wikberg H, Pesonen E, Maunu S-L, Serimaa R (2004) Studies of crystallinity of Scots pine and Norway spruce. Trees-Struct Funct 18:346–353

    Article  CAS  Google Scholar 

  • Astley RJ, Stol KA, Harrington JJ (1998) Modelling the elastic properties of softwood. Part II: The cellular microstructure. Holz Roh- Werkst 56:43–50

    Article  Google Scholar 

  • Bergander A, Salmén L (2000) Variations in transverse fibre wall properties: relations between elastic properties and structure. Holzforschung 54:654–660

    Article  CAS  Google Scholar 

  • Bergander A, Salmén L (2002) Cell wall properties and their effects on the mechanical properties of fibers. J Mater Sci 37:151–156

    Article  CAS  Google Scholar 

  • Bertaud F, Holmbom B (2004) Chemical composition of earlywood and latewood in Norway spruce heartwood, sapwood and transition zone wood. Wood Sci Technol 38:245–256

    Article  CAS  Google Scholar 

  • Burgert I, Keckes J, Frühmann K, Fratzl P, Tschegg SE (2002) A comparison of two techniques for wood fibre isolation evaluation by tensile tests on single fibres with different microfibril angle. Plant Biol 4:9–12

    Article  CAS  Google Scholar 

  • Cave ID, Hutt L (1969) The longitudinal Young’s modulus of Pinus Radiata. Wood Sci Technol 3:40–48

    Article  Google Scholar 

  • Cave ID, Walker JCF (1994) Stiffness of wood in fast-grown plantation softwoods: the influence of microfibril angle. Forest Prod J 44:43–48

    Google Scholar 

  • Eichhorn SJ, Sirichaisit J, Young RJ (2001) Deformation mechanisms in cellulose fibres, paper and wood. J Mater Sci 36:3129–3135

    Article  CAS  Google Scholar 

  • Fink H-P, Walenta E, Kunze J (1999) The structure of natural cellulosic fibres. Part 2. The supermolecular structure of bast fibres and their changes by mercerization as revealed by X-ray diffraction and 13C-NMR-spectrascopy. Papier 9:534–542

    Google Scholar 

  • Fratzl P, Burgert I, Keckes J (2004) Mechanical model for the deformation of the wood cell wall. Z Metallkd 95:579–584

    CAS  Google Scholar 

  • French J, Conn AB, Batchelor WJ, Parker IH (2000) The effect of fibre fibril angle on some handsheet mechanical properties. Appita J 53:210–226

    CAS  Google Scholar 

  • Gibson LJ (2005) Biomechanics of cellular solids. J Biomech 38:377–399

    Article  PubMed  Google Scholar 

  • Groom L, Mott L, Shaler S (2002) Mechanical properties of individual southern pine fibers. Part I. Determination and variability of stress-strain curves with respect to tree height and juvenility. Wood Fiber Sci 34:14–27

    CAS  Google Scholar 

  • Hinterstoisser B, Åkerholm M, Salmén L (2003) Load distribution in native cellulose. Biomacromolecules 4:1232–1237

    Article  PubMed  CAS  Google Scholar 

  • Hofstetter K, Hellmich C, Eberhardsteiner J (2005) Development and experimental validation of a continuum micromechanics model for the elasticity of wood. Eur J Mech A 24:1030–1053

    Article  Google Scholar 

  • Kamiyama T, Suzuki H, Sugiyama J (2005) Studies of the structural change during deformation in Cryptomeria japonica by time-resolved synchrotron small-angle X-ray scattering. J Struct Biol 151:1–11

    Article  PubMed  CAS  Google Scholar 

  • Keckes J, Burgert I, Frühmann K, Müller M, Kölln K, Hamilton M, Burghammer M, Roth SV, Stanzl-Tschegg S, Fratzl P (2003) Cell-wall recovery after irreversible deformation of wood. Nat Mater 2:810–814

    Article  PubMed  CAS  Google Scholar 

  • Kölln K (2004) Morphologie und mechanische Eigenschaften von Zellulosefasern. Untersuchung mit Röntgen- und Neutronenstreuung. PhD thesis, University of Kiel, Germany. The thesis is available online at http://www.e-diss.uni-kiel.de/diss_1173

  • Kölln K, Grotkopp I, Burghammer M, Roth SV, Funari SS, Dommach M, Müller M (2005) Mechanical properties of cellulose fibres and wood. Orientational aspects in situ investigated with synchrotron radiation. J Synchrotron Rad 12:739–744

    Article  CAS  Google Scholar 

  • Koponen S, Toratti T, Kanerva P (1989) Modelling longitudinal elastic and shrinkage properties of wood. Wood Sci Technol 23:55–63

    Article  Google Scholar 

  • Koponen T, Karppinen T, Hæggström E, Saranpää P, Serimaa R (2005) The stiffness modulus in Norway spruce as a function of year ring. Holzforschung 59:451–455

    Article  CAS  Google Scholar 

  • Kufner M (1978) Elastizitätsmodul und Zugfestigkeit von Holz verschiedener Rohdichte in Abhängigkeit vom Feuchtigkeitsgehalt. Holz Roh Werkst 36:435–439

    Article  Google Scholar 

  • Nakamura K, Wada M, Kuga S, Okano T (2004) Poisson’s ratio of cellulose Iβ and cellulose II. J Polymer Sci: Part B: Polymer Phys 42:1206–1211

    Article  CAS  Google Scholar 

  • Navi P, Rastogi PK, Gresse V, Tolou A (1995) Micromechanics of wood subjected to axial tension. Wood Sci Technol 29:411–429

    Article  CAS  Google Scholar 

  • Navi P, Pittet V, Plummer CJG (2002) Transient moisture effects on wood creep. Wood Sci Technol 36:447–462

    Article  CAS  Google Scholar 

  • Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124:9074–9082

    Article  PubMed  CAS  Google Scholar 

  • Page DH, El-Hosseiny F, Winkler K, Lancaster APS (1977) Elastic modulus of single wood pulp fibers. Tappi 60:114–117

    Google Scholar 

  • Panshin AJ, de Zeeuw C (1980) Textbook of wood technology, 4th edn. McGraw-Hill Inc., New York

    Google Scholar 

  • Persson K (2000) Micromechanical modelling of wood and fibre properties. PhD Thesis, Lund University, Sweden

  • Peura M, Müller M, Serimaa R, Vainio U, Sarén M-P, Saranpää P, Burghammer M (2005) Structural studies of single wood cell walls by synchrotron X-ray microdiffraction and polarised light microscopy. Nucl Inst Meth B 238:16–20

    Article  CAS  Google Scholar 

  • Peura M, Grotkopp I, Lemke H, Vikkula A, Laine J, Müller M, Serimaa R (2006) Negative Poisson ratio in kraft cooked Norway spruce. Biomacromolecules 7:1521–1528

    Article  PubMed  CAS  Google Scholar 

  • Peura M, Müller M, Vainio U, Sarén MP, Saranpää P, Serimaa R (2007) X-ray microdiffraction reveals the orientation of cellulose microfibrils and the size of cellulose crystallites in single Norway spruce tracheids. Trees-Struct Funct (submitted)

  • Reiterer A, Lichtenegger H, Tschegg S, Fratzl P (1999) Experimental evidence for a mechanical function of the cellulose microfibril angle in wood cell walls. Phil Mag A 79:2173–2184

    Article  CAS  Google Scholar 

  • Reiterer A, Lichtenegger H, Fratzl P, Stanzl-Tschegg SE (2001) Deformation and energy absorption of wood cell walls with different nanostructure under tensile loading. J Mater Sci 36:4681–4686

    Article  CAS  Google Scholar 

  • Sakurada I, Nukushina Y, Ito T (1962) Experimental determination of the elastic modulus of crystalline regions in oriented polymers. J Polymer Sci 57:651–660

    Article  CAS  Google Scholar 

  • Salmén L (2004) Micromechanical understanding of the cell-wall structure. C R Biologies 327:873–880

    Article  PubMed  CAS  Google Scholar 

  • Sarén MP, Serimaa R, Andersson S, Paakkari T, Saranpää P, Pesonen E (2001) Structural variation of tracheids in Norway spruce (Picea abies [L.] Karst.). J Struct Biol 136:101–109

    Article  PubMed  Google Scholar 

  • Sarén MP, Serimaa R, Andersson S, Saranpää P, Keckes J, Fratzl P (2004) Effect of growth rate on mean microfibril angle and cross-sectional shape of tracheids of Norway spruce. Trees 18:354–362

    Google Scholar 

  • Sinn G, Reiterer A, Stanzl-Tschegg SE, Tschegg EK (2001) Determination of strains of single wood samples using videoextensometry. Holz Roh- Werkst 59:177–182

    Article  Google Scholar 

  • Tashiro K, Kobayashi M (1991) Theoretical evaluation of three-dimensional elastic constants of native and regenerated celluloses: role of hydrogen bonds. Polymer 32:1516–1526

    Article  CAS  Google Scholar 

  • Verkasalo E, Leban J (2002) MOE and MOR in static bending of small clear specimens of Scots pine, Norway spruce and European fir from Finland and France and their prediction for the comparison of wood quality. Pap Ja Puu-Pap Timber 84:332–340

    Google Scholar 

  • Woodcock C, Sarko A (1980) Packing analysis of carbohydrates and polysaccharides. 11. Molecular and crystal structure of native ramie cellulose. Macromolecules 13:1183–1187

    Article  CAS  Google Scholar 

  • Xu P, Liu H (2004) Models of microfibril elastic modulus parallel to the cell axis. Wood Sci Technol 38:363–374

    CAS  Google Scholar 

  • Yamamoto H, Kojima Y, Okyama T, Abasolo WP (2002) Origin of the biomechanical properties of wood related to the fine structure of the multi-layered cell wall. J Biomech Eng-T ASME 124:432–440

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Dr. Sergio Funari and M.Sc. Martin Dommach of HASYLAB for their assistance during the measurements at beamline A2. The authors are thankful to Mr. Tapio Järvinen of the Finnish Forest Research Institute for cutting the samples. The Academy of Finland is gratefully acknowledged for financing (grant 104837). The Finnish Academy of Science and Letters is gratefully acknowledged for providing funding for the measurement journeys.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ritva Serimaa.

Appendix

Appendix

Table 2 shows the variation of the determined structural parameters and the tensile properties in juvenile and mature earlywood and latewood, along with the average accuracy of the results for each of the sample categories.

Table 2 Minimum and maximum values of the results from juvenile and mature earlywood and latewood

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peura, M., Kölln, K., Grotkopp, I. et al. The effect of axial strain on crystalline cellulose in Norway spruce. Wood Sci Technol 41, 565–583 (2007). https://doi.org/10.1007/s00226-007-0141-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00226-007-0141-x

Keywords

Navigation