Skip to main content
Log in

Exact Constructive and Computable Dimensions

  • Published:
Theory of Computing Systems Aims and scope Submit manuscript

Abstract

In this paper we derive several results which generalise the constructive dimension of (sets of) infinite strings to the case of exact dimension. We start with proving a martingale characterisation of exact Hausdorff dimension. Then using semi-computable super-martingales we introduce the notion of exact constructive dimension of (sets of) infinite strings. This allows us to derive several bounds on the complexity functions of infinite strings, that is, functions assigning to every finite prefix its Kolmogorov complexity. In particular, it is shown that the exact Hausdorff dimension of a set of infinite strings lower bounds the maximum complexity function of strings in this set. Furthermore, we show a result bounding the exact Hausdorff dimension of a set of strings having a certain computable complexity function as upper bound. Obviously, the Hausdorff dimension of a set of strings alone without any computability constraints cannot yield upper bounds on the complexity of strings in the set. If we require, however, the set of strings to be Σ2-definable several results upper bounding the complexity by the exact Hausdorff dimension hold true. First we prove that for a Σ2-definable set with computable dimension function one can construct a computable – not only semi-computable – martingale succeeding on this set. Then, using this result, a tight upper bound on the prefix complexity function for all strings in the set is obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. In the recent monograph [6] ω-words are referred to as sets and ω-languages as classes. In this paper we reserve the term “set” to the original meaning as introduced by Georg Cantor.

  2. In fact, since we are only interested in the values \(h(r^{-n}),\ n\in \mathbb {N}\), the requirement of right continuity is just to conform with the usual meaning (cf. [11, 27]).

  3. Observe that h h implies hh .

References

  1. Cai, J.Y., Hartmanis, J.: On Hausdorff and topological dimensions of the Kolmogorov complexity of the real line. J. Comput. System Sci. 49(3), 605–619 (1994). doi:10.1016/S0022-0000(05)80073-X

    Article  MathSciNet  MATH  Google Scholar 

  2. Calude, C.S.: Information and randomness, second edn. Texts in Theoretical Computer Science. An EATCS Series. Springer-Verlag, Berlin (2002). doi:10.1007/978-3-662-04978-5. An algorithmic perspective, With forewords by Gregory J. Chaitin and Arto Salomaa

    Google Scholar 

  3. Calude, C.S., Hay, N.J., Stephan, F.: Representation of left-computable ε-random reals. J. Comput. System Sci. 77(4), 812–819 (2011). doi:10.1016/j.jcss.2010.08.001

    Article  MathSciNet  MATH  Google Scholar 

  4. Calude, C.S., Staiger, L., Terwijn, S.A.: On partial randomness. Ann. Pure Appl. Logic 138(1-3), 20–30 (2006). doi:10.1016/j.apal.2005.06.004

    Article  MathSciNet  MATH  Google Scholar 

  5. Daley, R.P.: The extent and density of sequences within the minimal-program complexity hierarchies. J. Comput. System Sci. 9, 151–163 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  6. Downey, R.G., Hirschfeldt, D.R.: Algorithmic Randomness and Complexity. Theory and Applications of Computability. Springer-Verlag, New York (2010). doi:10.1007/978-0-387-68441-3

    Book  MATH  Google Scholar 

  7. Edgar, G.: Measure, Topology, and Fractal Geometry, second edn. Undergraduate Texts in Mathematics. Springer, New York (2008). doi:10.1007/978-0-387-74749-1

    Book  MATH  Google Scholar 

  8. Eggleston, H.G.: A property of Hausdorff measure. Duke Math. J. 17, 491–498 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  9. Eggleston, H.G.: Correction to A property of Hausdorff measure. Duke Math. J. 18, 593 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  10. Falconer, K.: Fractal Geometry. John Wiley & Sons Ltd., Chichester (1990)

    MATH  Google Scholar 

  11. Graf, S., Mauldin, R.D., Williams, S.C.: The exact Hausdorff dimension in random recursive constructions. Mem. Amer. Math. Soc. 71(381) (1988)

  12. Hausdorff, F.: Dimension und äußeres Maß. Math. Ann. 79(1-2), 157–179 (1918). doi:10.1007/BF01457179

    Article  MathSciNet  MATH  Google Scholar 

  13. Hitchcock, J.M.: Correspondence principles for effective dimensions. Theory Comput. Syst. 38(5), 559–571 (2005). doi:10.1007/s00224-004-1122-1

    Article  MathSciNet  MATH  Google Scholar 

  14. Hitchcock, J.M., López-valdés, M.a., Mayordomo, E.: Scaled dimension and the K,olmogorov complexity of Turing-hard sets. Theory Comput. Syst. 43(3-4), 471–497 (2008). doi:10.1007/s00224-007-9013-x

    Article  MathSciNet  MATH  Google Scholar 

  15. Hitchcock, J.M., Lutz, J.H., Mayordomo, E.: Scaled dimension and nonuniform complexity. J. Comput. System Sci. 69(2), 97–122 (2004). doi:10.1016/j.jcss.2003.09.001

    Article  MathSciNet  MATH  Google Scholar 

  16. Li, M., Vitányi, P. M. B.: An introduction to Kolmogorov complexity and its applications. Texts and Monographs in Computer Science Springer. doi:10.1007/978-1-4757-3860-5 (1993)

  17. Lutz, J.H.: Gales and the constructive dimension of individual sequences. In: Montanari, U., Rolim, J.D.P., Welzl, E. (eds.) Automata, languages and programming, Lecture Notes in Comput. Sci. doi:10.1007/3-540-45022-X_76, vol. 1853, pp 902–913. Springer, Berlin (2000)

  18. Lutz, J.H.: Dimension in complexity classes. SIAM J. Comput. 32(5), 1236–1259 (2003). doi:10.1137/S0097539701417723

    Article  MathSciNet  MATH  Google Scholar 

  19. Lutz, J.H.: The dimensions of individual strings and sequences. Inform. and Comput. 187(1), 49–79 (2003). doi:10.1016/S0890-5401(03)00187-1

    Article  MathSciNet  MATH  Google Scholar 

  20. Mauldin, R.D., Graf, S., Williams, S.C.: Exact Hausdorff dimension in random recursive constructions. Proc. Nat. Acad. Sci. U.S.A. 84(12), 3959–3961 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  21. Mauldin, R.D., McLinden, A.P.: Random closed sets viewed as random recursions. Arch. Math. Logic 48(3-4), 257–263 (2009). doi:10.1007/s00153-009-0126-6

    Article  MathSciNet  MATH  Google Scholar 

  22. Mayordomo, E.: A Kolmogorov complexity characterization of constructive Hausdorff dimension. Inf. Process. Lett. 84(1), 1–3 (2002). doi:10.1016/S0020-0190(02)00343-5

    Article  MathSciNet  MATH  Google Scholar 

  23. Mielke, J.: Refined bounds on Kolmogorov complexity for ω-languages. Electr. Notes Theor. Comput. Sci. 221, 181–189 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. Mielke, J.: Verfeinerung der Hausdorff-Dimension und Komplexität von ω-Sprachen. Ph.D. thesis, Martin-Luther-Universität Halle-Wittenberg (2010). http://nbn-resolving.de/urn:nbn:de:gbv:3:4-2816. [in German]

    Google Scholar 

  25. Reimann, J.: Computability and Fractal Dimension. Ph.D. thesis, Ruprecht-Karls-Universität Heidelberg (2004)

    MATH  Google Scholar 

  26. Reimann, J., Stephan, F.: Hierarchies of Randomness Tests. In: Goncharov, S.S., Downey, R., Ono, H. (eds.) Mathematical Logic in Asia, pp 215–232. World Scientific, Hackensack, NJ (2006)

    Chapter  Google Scholar 

  27. Rogers, C.A.: Hausdorff measures. Cambridge Mathematical Library. Cambridge University Press, Cambridge (1998). Reprint of the 1970 original, With a foreword by K. J. Falconer

    Google Scholar 

  28. Ryabko, B.Y.: Coding of combinatorial sources and Hausdorff dimension. Dokl. Akad. Nauk SSSR 277(5), 1066–1070 (1984)

    MathSciNet  MATH  Google Scholar 

  29. Ryabko, B.Y.: Noise-free coding of combinatorial sources, Hausdorff dimension and Kolmogorov complexity. Problemy Peredachi Informatsii 22(3), 16–26 (1986)

    MathSciNet  MATH  Google Scholar 

  30. Schnorr, C.P.: Zufälligkeit und Wahrscheinlichkeit. Eine Algorithmische Begründung der Wahrscheinlichkeitstheorie. Lecture Notes in Mathematics, vol. 218. Springer-Verlag, Berlin (1971)

  31. Staiger, L.: Kolmogorov complexity and Hausdorff dimension. Inf. Comput. 103(2), 159–194 (1993). doi:10.1006/inco.1993.1017

    Article  MathSciNet  MATH  Google Scholar 

  32. Staiger, L.: A tight upper bound on Kolmogorov complexity and uniformly optimal prediction. Theory Comput. Syst. 31(3), 215–229 (1998). doi:10.1007/s002240000086

    Article  MathSciNet  MATH  Google Scholar 

  33. Staiger, L.: Constructive dimension equals Kolmogorov complexity. Inform. Process. Lett. 93(3), 149–153 (2005). doi:10.1016/j.ipl.2004.09.023

    Article  MathSciNet  MATH  Google Scholar 

  34. Staiger, L.: The Kolmogorov complexity of infinite words. Theoret. Comput. Sci. 383(2-3), 187–199 (2007). doi:10.1016/j.tcs.2007.04.013

    Article  MathSciNet  MATH  Google Scholar 

  35. Staiger, L.: On oscillation-free ε-random sequences. Electr. Notes Theor. Comput. Sci. 221, 287–297 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  36. Staiger, L.: Constructive Dimension and Hausdorff Dimension: The Case of Exact Dimension. In: Owe, O., Steffen, M., Telle, J.A. (eds.) Fundamentals of Computation Theory, Lecture Notes in Computer Science, Vol. 6914, pp 252–263. Springer, Heidelberg (2011)

    Google Scholar 

  37. Staiger, L.: A Correspondence Principle for Exact Constructive Dimension. In: Cooper, S.B., Dawar, A., Löwe, B. (eds.) Computability in Europe, Lecture Notes in Computer Science, Vol. 7318, pp 686–695. Springer, Heidelberg (2012)

    Google Scholar 

  38. Staiger, L.: Bounds on the Kolmogorov Complexity Function for Infinite Words. In: Burgin, M., Calude, C.S. (eds.) Information and Complexity, World Scientific Series in Information Studies, Vol. 6, Chap. 8, pp 200–224. World Scientific, Singapore (2017)

    Google Scholar 

  39. Tadaki, K.: A generalization of Chaitin’s halting probability Ω and halting self-similar sets. Hokkaido Math. J. 31(1), 219–253 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  40. Terwijn, S.a.: Complexity and randomness. Rend. Semin. Mat. Torino 62(1), 1–37 (2004)

    MathSciNet  MATH  Google Scholar 

  41. Uspenskiı̆, V.A., Semenov, A.L., Sheń, A.K.: Can an (individual) sequence of zeros and ones be random?. Uspekhi Mat. Nauk 45(1(271)), 105–162, 222 (1990). doi:10.1070/RM1990v045n01ABEH002321

    MathSciNet  Google Scholar 

  42. Uspensky, V.A.: Complexity and Entropy: an Introduction to the Theory of Kolmogorov Complexity. In: Watanabe, O. (ed.) Kolmogorov Complexity and Computational Complexity, EATCS Monogr. Theoret. Comput. Sci., pp 85–102. Springer, Berlin (1992)

    Chapter  Google Scholar 

  43. Uspensky, V.A., Shen, A.: Relations between varieties of Kolmogorov complexities. Math. Systems Theory 29(3), 271–292 (1996). doi:10.1007/BF01201280

    Article  MathSciNet  MATH  Google Scholar 

  44. Zvonkin, A.K., Levin, L.A.: The complexity of finite objects and the basing of the concepts of information and randomness on the theory of algorithms. Uspehi Mat. Nauk 25(6(156)), 85–127 (1970)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ludwig Staiger.

Additional information

This article is part of the Topical Collection on Special Issue on Computability, Complexity and Randomness (CCR 2015)

The results of this paper were presented at the conference “Varieties of Algorithmic Information 2015”, June 15–18, 2015, Heidelberg, Germany.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Staiger, L. Exact Constructive and Computable Dimensions. Theory Comput Syst 61, 1288–1314 (2017). https://doi.org/10.1007/s00224-017-9790-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00224-017-9790-9

Keywords

Navigation