Skip to main content
Log in

Symbolic Dynamics: Entropy = Dimension = Complexity

  • Published:
Theory of Computing Systems Aims and scope Submit manuscript

Abstract

Let d be a positive integer. Let G be the additive monoid ℕd or the additive group ℤd. Let A be a finite set of symbols. The shift action of G on A G is given by S g(x)(h) = x(g+h) for all g, hG and all xA G. A G-subshift is defined to be a nonempty closed set XA G such that S g(x)∈X for all gG and all xX. Given a G-subshift X, the topological entropy ent(X) is defined as usual (Ruelle Trans. Am. Math. Soc. 187, 237–251, 1973). The standard metric on A G is defined by ρ(x, y) = \(2^{-|F_{n}|}\) where n is as large as possible such that xF n = yF n . Here F n = {0, 1, … , n}d if G = ℕd, and F n = {−n, … , −1, 0, 1, … , n}d if G = ℤd. For any XA G the Hausdorff dimension dim(X) and the effective Hausdorff dimension effdim(X) are defined as usual (Hausdorff Math. Ann. 79, 157–179 1919; Reimann 2004; Reimann and Stephan 2005) with respect to the standard metric. It is well known that effdim(X) = sup x∈X lim inf n K(xF n )/|F n | where K denotes Kolmogorov complexity (Downey and Hirschfeldt 2010). If X is a G-subshift, we prove that ent(X) = dim(X) = effdim(X), and ent(X) ≥ limsup n K(xF n )/|F n | for all xX, and ent(X) = limn K(xF n )/|F n | for some xX.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. In particular, the sequence F n with n = 0, 1, 2, … is a Følner sequence for G.

  2. Instead of log2 we could use logb for any fixed b > 1, for instance b = e or b = 10. The base b = 2 is convenient for information theory, where entropy is measured in bits.

  3. Our Φ for A G is obtained as follows. Let \(\#:A^{*}\to \mathbb {N}\) be a standard Gödel numbering of A . In other words, for each σA let #(σ) be a numerical code for σ from which σ can be effectively recovered. Let a be a fixed symbol in A. Define Φ: ℕ → A G by letting Φ(#(σ))=x σ A G where x σ ∈⟦σ⟧ and x σ (g) = a for all gG∖dom(σ).

  4. Here are the details. Define L 1 = {υ j j = 1, 2, … } where υ j K 1 is chosen inductively so that υ i υ j = ∅ for all i < j and |υ j | is as large as possible. Then for all τK 1 there exists υL 1 such that τυ≠∅ and |τ| ≤ |υ|. From this it follows that \(|\bigcup L_{1}|\ge |\bigcup K_{1}|/3^{d}\).

References

  1. Baaz, M., Friedman, S.-D., Krajíček, J. (eds.): Logic Colloquium ’01 Proceedings of the Annual European Summer Meeting of the Association for Symbolic Logic, held in Vienna, Austria, 6–11 August 2001. Number 20 in Lecture Notes in Logic. Association for Symbolic Logic, VIII + 486 pp. (2005)

  2. Bezuglyi, S., Kolyada, S. (eds.): Topics in Dynamics and Ergodic Theory. Number 310 in London Mathematical Society Lecture Note Series. Cambridge University Press, VIII + 262 pp. (2003)

  3. Bowen, R.: Topological entropy for noncompact sets. Trans. Am. Math. Soc. 184, 125–136 (1973)

    Article  MathSciNet  Google Scholar 

  4. Boyle, M.: Open problems in symbolic dynamics. In: Burns, K., Dolgopyat, D., Pesin, Y. (eds.) Geometric and Probabilistic Structures in Dynamics. Number 469 in Contemporary Mathematics, pp. 69–118. American Mathematical Society. XVI + 340 pp. (2008)

  5. Brudno, A. A.: Entropy and the complexity of the trajectories of a dynamical system. Trans. Mosc. Math. Soc. 2, 127–151 (1983)

    Google Scholar 

  6. Burns, K., Dolgopyat, D., Pesin, Y. (eds.): Geometric and Probabilistic Structures in Dynamics. Number 469 in Contemporary Mathematics. American Mathematical Society, XVI + 340 pp. (2008)

  7. Climenhaga, V.: Bowen’s equation in the non-uniform setting. Ergodic Theory Dyn. Syst. 31(4), 1163–1182 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  8. Cover, T.M., Thomas, J.A.: Elements of Information Theory, 2nd edn. Wiley-Interscience. XXIII + 748 pp. (2006)

  9. Denker, M., Grillenberger, C., Sigmund, K.: Ergodic Theory on Compact Spaces, IV + 360 pp. Number 527 in Lecture Notes in Mathematics. Springer (1976)

  10. Downey, R.G., Hirschfeldt, D.R.: Algorithmic Randomness and Complexity. Theory and Applications of Computability, XXVIII + 855 pp. Springer (2010)

  11. Falconer, K.: Fractal Geometry, 2nd edn, XXVIII + 337 pp. Wiley. (2003)

  12. Furstenberg, H.: Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation. Math. Syst. Theory 1, 1–49 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  13. Gallavotti, G., Keane, M., Ruelle, D. (eds.): International Conference on Dynamical Systems in Mathematical Physics. Number 40 in Astérisque. Société Mathématique de France, IV + 192 pp. (1976)

  14. Goncharov, S.S., Downey, R., Ono, H.: Mathematical Logic in Asia: Proceedings of the 9th Asian Logic Conference, Novosibirsk. World Scientific Publishing Company, Ltd. VIII + 328 pp. (2006)

  15. Hausdorff, F.: Dimension und äußeres Maß. Math. Ann. 79, 157–179 (1919)

    Article  MathSciNet  Google Scholar 

  16. Hochman, M., Meyerovitch, T.: A characterization of the entropies of multidimensional shifts of finite type. Ann. Math. 171, 2011–2038 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  17. Katok, A., Thouvenot, J.-P.: Slow entropy type invariants and smooth realization of commuting measure-preserving transformations. Ann. Inst. Henri Poincaré, Probab. Stat. 33, 323–338 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  18. Kolmogorov, A.N.: Three approaches to the quantitative definition of information. Probl. Inf. Transm. 1(1), 1–7 (1965)

    MathSciNet  Google Scholar 

  19. Li, M., Vitányi, P.: An Introduction to Kolmogorov Complexity and its Applications. Graduate Texts in Computer Science, 2nd edn, XX + 637 pp. Springer (1997)

  20. Lind, D., Marcus, B.: An Introduction to Symbolic Dynamics and Coding, XVI + 495 pp.Cambridge University Press, Cambridge (1995)

    Book  Google Scholar 

  21. Misiurewicz, M.: A short proof of the variational principle for a \(\mathbb {Z_+^{N}}\)-action on a compact space. In: Gallavotti, G., Keane, M., Ruelle, D. (eds.) International Conference on Dynamical Systems in Mathematical Physics, pp. 147–157. Number 40 in Astérisque. Société Mathématique de France. IV + 192 pp. (1976)

  22. Nies, A.: Computability and Randomness, XV + 433 pp.Oxford University Press, London (2009)

    Book  Google Scholar 

  23. Ornstein, D., Weiss, B.: The Shannon-McMillan-Breiman theorem for a class of amenable groups. Israel J. Math. 44, 53–60 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  24. Ornstein, D., Weiss, B.: Entropy and isomorphism theorems for actions of amenable groups. J. Anal. Math. 48, 1–141 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  25. Pesin, Y.B.: Dimension Theory in Dynamical Systems. Chicago Lectures in Mathematics, XI + 304 pp.University of Chicago Press, Chicago (1997)

    Book  Google Scholar 

  26. Reimann, J.: Computability and Fractal Dimension., XI + 130 pp. PhD thesis, University of Heidelberg (2004)

  27. Reimann, J., Stephan, F.: Effective Hausdorff dimension. In: Baaz, M., Friedman, S.-D., Krajíček, J. (eds.) Logic Colloquium ’01: Proceedings of the Annual European Summer Meeting of the Association for Symbolic Logic, held in Vienna, Austria, August 6–11, 2001. Number 20 in Lecture Notes in Logic. Association for Symbolic Logic. VIII + 486 pages, pp. 369–385 (2005)

  28. Reimann, J., Stephan, F.: On hierarchies of randomness tests. In: Goncharov, S.S., Downey, R., Ono, H. (eds.) Mathematical Logic in Asia: Proceedings of the 9th Asian Logic Conference, Novosibirsk, pp. 215–232. World Scientific Publishing Company, VIII + 328 pp. (2006)

  29. Rogers, C.A.: Hausdorff Measures VIII + 179 pp.Cambridge University Press, Cambridge (1970)

    Google Scholar 

  30. Hartley, R. Jr.: Theory of Recursive Functions and Effective Computability , XIX + 482 pp.McGraw-Hill, New York (1967)

    Google Scholar 

  31. Ruelle, D.: Statistical mechanics on a compact set with \(\mathbb {Z^{\nu }}\) action satisfying expansiveness and specification. Trans. Am. Math. Soc. 187, 237–251 (1973)

    Article  MathSciNet  Google Scholar 

  32. Shannon, C.E., Weaver, W.: The Mathematical Theory of Communication, V + 117 pp.University of Illinois Press, Urbana (1949)

    Google Scholar 

  33. Shields, P.C.: The Ergodic Theory of Discrete Sample Paths. Number 13 in Graduate Studies in Mathematics, XI + 249 pp. American Mathematical Society (1996)

  34. Simpson, S.G. Medvedev degrees of 2-dimensional subshifts of finite type. Ergodic Theory Dyn. Syst. 10 pp. (2013) http://dx.doi.org/10.1017/etds.2012.152

  35. Sinai, Y.: Kolmogorov-Sinai entropy. Scholarpedia 4(3), 2034 (2009). http://dx.doi.org/10.4249/scholarpedia.2034

    Article  Google Scholar 

  36. Turing, A.M.: On computable numbers, with an application to the Entscheidungsproblem. Proc. Lond. Math. Soc. 42, 230–265 (1936)

    MathSciNet  Google Scholar 

  37. Uspensky, V.A., Shen, A.: Relations between varieties of Kolmogorov complexity. Math. Syst. Theory 29, 271–292 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  38. Weiss, B.: Actions of amenable groups. In: Bezuglyi, S., Kolyada, S. (eds.) Topics in Dynamics and Ergodic Theory, pp. 226–262. Number 310 in London Mathematical Society Lecture Note Series. Cambridge University Press. VIII + 262 pp. (2003)

  39. White, H.S.: Algorithmic complexity of points in dynamical systems. Ergodic Theory Dyn. Syst. 13(4), 807–830 (1993)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

We thank the anonymous referees for comments which led to improvements in this paper. In particular, the proof of Lemma 5.1 was suggested by the first referee and is much simpler than our original proof.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen G. Simpson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simpson, S.G. Symbolic Dynamics: Entropy = Dimension = Complexity. Theory Comput Syst 56, 527–543 (2015). https://doi.org/10.1007/s00224-014-9546-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00224-014-9546-8

Keywords

Mathematics Subject Classifications (2010)

Navigation