Skip to main content

Advertisement

Log in

Bone Mineral Density is Lower in Patients with Severe Knee Osteoarthritis and Attrition

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Bone quality is probably important for the survival of knee arthroplasty (KA), but little is known about systemic bone mineral density and bone turnover in patients prior to KA surgery. The aim of this study was to explore the prevalence of osteoporosis and bone turnover in relation to knee osteoarthritis (OA) grade in patients scheduled for KA surgery. Prospective preoperative evaluation of 450 patients (259 females) prior to KA between 2014 and 2016 with standing knee radiography, Dual-energy X-ray absorptiometry (DXA), biomarkers for bone turnover (CTX, P1NP), and vitamin D. Grading of knee OA was done with the Altman Atlas and Kellgren Lawrence (KL). Adjustments for age and BMI were made. The mean age was 67.9 years (range 39–94), and mean BMI was 28.8 (SD 4.8). The prevalence of osteoporosis was 9.6% (CI 95% 7.2; 12.7), while the proportion of patients with osteopenia was 36.0%. T score was similar between KL OA grade 3 and 4 (p = 0.06); however, T score was lower (p = 0.02) with the worst knee OA grade (attrition). The median serum Vitamin D level was 78.5 nmol/L (range 10–196), and there was no association between serum vitamin D and the grade of OA (p > 0.88). P1NP was significantly higher in KL grade 4 compared to KL grade 3 (p = 0.03), but there was no association between KL grade and CTX (p = 0.21). 10% had osteoporosis, which is similar to the age-matched background population. Bone mineral density was lower with severe knee osteoarthritis (attrition), and P1NP was higher with worse osteoarthritis grading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Foss MVL, Byers PD (1972) Bone density, osteoarthrosis of the hip, and fracture of the upper end of the femur. Ann Rheum Dis 31:259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Geusens PP, van den Bergh JP (2016) Osteoporosis and osteoarthritis: shared mechanisms and epidemiology. Curr Opin Rheumatol 28(2):97–103

    Article  CAS  PubMed  Google Scholar 

  3. Hannan MT et al (1993) Bone mineral density and knee osteoarthritis in elderly men and women. The Framingham study. Arthr Rheum 36(12):1671–1680

    Article  CAS  Google Scholar 

  4. Burger H et al (1996) Association of radiographically evident osteoarthritis with higher bone mineral density and increased bone loss with age. The Rotterdam Study. Arthr Rheum 39(1):81–86

    Article  CAS  Google Scholar 

  5. Hart DJ et al (1994) The relationship between osteoarthritis and osteoporosis in the general population: the chingford study. Ann Rheum Dis 53:158–162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hart DJ et al (2002) The relationship of bone density and fracture to incident and progressive radiographic osteoarthritis of the knee: the Chingford Study. Arthr Rheum 46(1):92–99

    Article  Google Scholar 

  7. Zhang Y et al (2000) Bone mineral density and risk of incident and progressive radiographic knee osteoarthritis in women: the Framingham study. J Rheumatol 27(4):1032–1037

    CAS  PubMed  Google Scholar 

  8. Arden N, Nevitt MC (2006) Osteoarthritis: epidemiology. Best Pract Res Clin Rheumatol 20(1):3–25

    Article  PubMed  Google Scholar 

  9. Johnson VL, Hunter DJ (2014) The epidemiology of osteoarthritis. Best Pract Res Clin Rheumatol 28(1):5–15

    Article  PubMed  Google Scholar 

  10. Javaid MK, Arden NK (2013) Bone and osteoarthritis: what is the relationship? Arthr Rheum 65(6):1418–1420

    Article  CAS  Google Scholar 

  11. Garnero P, Rousseau JC, Delmas PD (2000) Molecular basis and clinical use of biochemical markers of bone, cartilage, and synovium in joint diseases. Arthr Rheum 43(5):953–968

    Article  CAS  Google Scholar 

  12. Glyn-Jones S et al (2015) Osteoarthritis. Lancet 386(9991):376–387

    Article  CAS  PubMed  Google Scholar 

  13. Garnero P et al (2001) Cross sectional evaluation of biochemical markers of bone, cartilage, and synovial tissue metabolism in patients with knee osteoarthritis: relations with disease activity and joint damage. Ann Rheum Dis 60:619–626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Goula T et al (2015) Vitamin D status in patients with knee or hip osteoarthritis in a Mediterranean country. J Orthop Traumatol 16(1):35–39

    Article  PubMed  Google Scholar 

  15. Lotz M et al (2013) Value of biomarkers in osteoarthritis: current status and perspectives. Ann Rheum Dis 72(11):1756–1763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Aro HT et al (2012) Low BMD affects initial stability and delays stem osseointegration in cementless total hip arthroplasty in women: a 2-year RSA study of 39 patients. Acta Orthop 83(2):107–114

    Article  PubMed  PubMed Central  Google Scholar 

  17. Finnila S et al (2016) Increased migration of uncemented acetabular cups in female total hip arthroplasty patients with low systemic bone mineral density. Acta Orthop 87(1):48–54

    Article  PubMed  Google Scholar 

  18. Sumner DR, Ross R, Purdue E (2014) Are there biological markers for wear or corrosion? A systematic review. Clin Orthop Relat Res 472(12):3728–3739

    Article  PubMed  PubMed Central  Google Scholar 

  19. Valstar ER et al (2005) Guidelines for standardization of radiostereometry (RSA) of implants. Acta Orthop 76(4):563–572

    Article  PubMed  Google Scholar 

  20. Alcohol and national guidelines in Denmark (2010) Sundhedsstyrelsen.dk

  21. Dawson J et al (1998) Questionnaire on the perceptions of patients about total knee replacement. J bone Joint Surg 80B:63–69

    Article  Google Scholar 

  22. Roos EM et al (1998) knee injury and osteoarthritis outcome score (KOOS)- development of a self-administered outcome measure. J Orthop Sports Phys Ther 78:2

    Google Scholar 

  23. Roos EM et al (1998) Knee injury and osteoarthritis outcome score (KOOS) - validation of a Swedish version. Scand J Med Sci Sports 8:439–448

    Article  CAS  PubMed  Google Scholar 

  24. Odgaard A, Paulsen A. Translation and cross-cultural adaptation of the Danish version of Oxford knee score (OKS)

  25. Vasikaran S et al (2011) International osteoporosis foundation and international federation of clinical chemistry and laboratory medicine position on bone marker standards in osteoporosis. Clin Chem Lab Med 49(8):1271–1274

    Article  CAS  PubMed  Google Scholar 

  26. Vasikaran S et al (2011) Markers of bone turnover for the prediction of fracture risk and monitoring of osteoporosis treatment: a need for international reference standards. Osteoporos Int 22(2):391–420

    Article  CAS  PubMed  Google Scholar 

  27. Sundhedsstyrelsen.dk (2016) D-vitamin

  28. WHO (2004) WHO scientific group on the assesment of osteoporosis at primary health care level

  29. Kellgren JH, Lawrence JS (1957) Radiological assesment of osteoarthrosis. Ann Rheum Dis

  30. Altman RD, Gold GE (2007) Atlas of individual radiographic features in osteoarthritis, revised. Osteoarthr Cartil 15(Suppl A):A1–A56

    Article  PubMed  Google Scholar 

  31. Dieppe PA et al (2005) Assessing bone loss on radiographs of the knee in osteoarthritis: a cross-sectional study. Arthr Rheum 52(11):3536–3541

    Article  Google Scholar 

  32. Abrahamsen B, Vestergaard P (2009) Dansk Knoglemedicinsk Selskab. Baggrundsartikel: Epidemiologi

  33. Domingues VR et al (2015) Prevalence of osteoporosis in patients awaiting total hip arthroplasty. Acta Ortop Bras 23(1):34–37

    Article  PubMed  PubMed Central  Google Scholar 

  34. Lingard EA et al (2010) The prevalence of osteoporosis in patients with severe hip and knee osteoarthritis awaiting joint arthroplasty. Age Ageing 39:234–239

    Article  PubMed  Google Scholar 

  35. GE Healthcare L (2015) enCORE-based X-ray bone densitometry

  36. Schneider DL et al (2002) Bone mineral density and clinical hand osteoarthtitis in elderly men and women: the Rancho Bernardo study. J Rheumatol 29(7):1467–1472

    PubMed  Google Scholar 

  37. Jansen JA, Haddad FS (2013) High prevalence of vitamin D deficiency in elderly patients with advanced osteoarthritis scheduled for total knee replacement associated with poorer preoperative functional state. Ann R Coll Surg Engl 95(8):569–572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mabey T, Honsawek S (2015) Role of Vitamin D in osteoarthritis: molecular, Cellular, and Clinical Perspectives. Int J Endocrinol 2015:383918

    Article  PubMed  PubMed Central  Google Scholar 

  39. Thuesen B et al (2012) Determinants of vitamin D status in a general population of Danish adults. Bone 50(3):605–610

    Article  CAS  PubMed  Google Scholar 

  40. Hosnijeh FS et al (2015) Biomarkers for osteoarthritis: can they be used for risk assessment? A systematic review. Maturitas 82(1):36–49

    Article  PubMed  Google Scholar 

  41. Li MG, Thorsen K, Nilsson KG (2004) Increased bone turnover as reflected by biochemical markers in patients with potentially unstable fixation of the tibial component. Arch Orthop Trauma Surg 124(6):404–409

    Article  PubMed  Google Scholar 

  42. Liu S et al (2012) Bone turnover markers correlate with implant fixation in a rat model using LPS-doped particles to induced implant loosening. J Biomed Mater Res A 100(4):918–928

    Article  PubMed  PubMed Central  Google Scholar 

  43. Ronn SH et al (2016) Vitamin K2 (menaquinone-7) prevents age-related deterioration of trabecular bone microarchitecture at the tibia in postmenopausal women. Eur J Endocrinol 17:541–549

    Article  Google Scholar 

  44. Wheater G et al (2013) The clinical utility of bone marker measurements in osteoporosis. J Transl Med 11:201

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The study was performed under the Innovation Fund Grant 69-2013-1 “Transforming radiological technology for assessment of implant fixation: from research tool to clinical application.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karina Nørgaard Linde.

Ethics declarations

Conflict of interest

Karina Nørgaard Linde, Maiken Stilling, Inger Krog-Mikkelsen, Kjeld Søballe, Katriina Bøcker Puhakka and Frank Madsen report grants from the Innovation Fund Denmark during the conduct of the study. Main author Karina Nørgaard Linde reports a grant for a research year (salary to medical student) from Department of Clinical Medicine, Aarhus University. Bente Lomholt Langdahl reports grants from Novo Nordisk, grants from Amgen, personal fees from Eli Lilly, personal fees from Amgen, personal fees from UCB, personal fees from Merck, outside the submitted work.

Human and Animal Rights and Informed Consent

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. This article does not contain any studies with animals performed by any of the authors. Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Linde, K.N., Puhakka, K.B., Langdahl, B.L. et al. Bone Mineral Density is Lower in Patients with Severe Knee Osteoarthritis and Attrition. Calcif Tissue Int 101, 593–601 (2017). https://doi.org/10.1007/s00223-017-0315-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-017-0315-y

Keywords

Navigation