Skip to main content
Log in

Ketogenic Diet Compromises Both Cancellous and Cortical Bone Mass in Mice

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

To clarify osteoporotic effects of ketogenic diet (KD) on cancellous and cortical bone compared with ovariectomy (OVX) in mice. Forty female C57BL/6J 8-week-old mice were randomly divided into SD+Sham, SD+OVX, KD+Sham, and KD+OVX groups, and fed for 12 weeks. The distal femur of trabecular bone and the middle femur of cortical bone were evaluated with Micro-CT scanning. The maximum bending force and stiffness of the tibia were calculated using a three-point bending test. Osteoblast and osteoclast expression of femur were identified using tartrate-resistant acid phosphatase (TRAP), collagen type I (CoLI), and osteocalcin (OCN) staining. A 2-factor analysis of variance was used to evaluate effects of KD and OVX on radiological, biomechanical, and histological parameters. KD resulted in not only remarkable cancellous bone decline comparable to OVX, but also unique cortical bone reduction. The maximum bending force and stiffness decreased in the KD+Sham and KD+OVX groups but did not change in the SD+OVX group. The KD+OVX led to significantly higher expression in TRAP and noticeably lower expression in CoLI when compared with other groups. Both KD+Sham and SD+OVX prominently increased expression in TRAP, but decreased expression in CoLI. There was no significant difference in OCN among the four groups. The present results suggest that KD compromises both the cancellous and cortical bone architecture of long bones while OVX only in cancellous bone architecture. A combination of KD and OVX may lead to more bone loss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Yudkoff M, Daikhin Y, Melo TM, Nissim I, Sonnewald U, Nissim I (2007) The ketogenic diet and brain metabolism of amino acids: relationship to the anticonvulsant effect. Annu Rev Nutr 27:415–430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Guzmán M, Blázquez C (2004) Ketone body synthesis in the brain: possible neuroprotective effects. Prostaglandins Leukot Essent Fat Acids 70:287–292

    Article  Google Scholar 

  3. Streijger F, Plunet WT, Lee JHT, Liu J, Lam CK, Park S, Hilton BJ, Fransen BL, Matheson KAJ, Assinck P, Kwon BK, Tetzlaff W (2013) Ketogenic diet improves forelimb motor function after spinal cord injury in rodents. PloS One 8:e78765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Winesett SP, Bessone SK, Kossoff EH (2015) The ketogenic diet in pharmacoresistant childhood epilepsy. Expert Rev Neurother 15:621–628

    Article  CAS  PubMed  Google Scholar 

  5. Kossoff EH, Pyzik PL, McGrogan JR, Vining EPG, Freeman JM (2002) Efficacy of the ketogenic diet for infantile spasms 109:780–783

    Google Scholar 

  6. Puchowicz MA, Zechel JL, Valerio J, Emancipator DS, Xu K, Pundik S, LaManna JC, Lust WD (2008) Neuroprotection in diet-induced ketotic rat brain after focal ischemia. J Cereb Blood Flow Metab 28:1907–1916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tai KK, Nguyen N, Pham L, Truong DD (2008) Ketogenic diet prevents cardiac arrest-induced cerebral ischemic neurodegeneration. J Neural Transm 115:1011–1017

    Article  CAS  PubMed  Google Scholar 

  8. Seyfried TN, Kiebish M, Mukherjee P, Marsh J (2008) Targeting energy metabolism in brain cancer with calorically restricted ketogenic diets. Epilepsia 49:114–116

    Article  PubMed  Google Scholar 

  9. Hahn TJ, Halstead LR, DeVivo DC (1979) Disordered mineral metabolism produced by ketogenic diet therapy. Calcif Tissue Int 28:17–22

    Article  CAS  PubMed  Google Scholar 

  10. Bergqvist AC, Schall JI, Stallings VA, Zemel BS (2008) Progressive bone mineral content loss in children with intractable epilepsy treated with the ketogenic diet. Am J Clin Nutr 88:1678–1684

    Article  CAS  PubMed  Google Scholar 

  11. van der Louw EJTM, Williams TJ, Henry-Barron BJ, Olieman JF, Duvekot JJ, Vermeulen MJ, Bannink N, Williams M, Neuteboom RF, Kossoff EH, Catsman-Berrevoets CE, Cervenka MC (2017) Ketogenic diet therapy for epilepsy during pregnancy: a case series. Seizure 45:198–201

    Article  PubMed  Google Scholar 

  12. Garcia-Penas JJ (2016) Autism spectrum disorder and epilepsy: the role of ketogenic diet. Rev Neurol 62(Suppl 1):S73–S78

    PubMed  Google Scholar 

  13. Woolf EC, Syed N, Scheck AC (2016) Tumor metabolism, the ketogenic diet and β-hydroxybutyrate: novel approaches to adjuvant brain tumor therapy. Front Mol Neurosci 9:122

    Article  PubMed  PubMed Central  Google Scholar 

  14. Vestergaard P (2005) Epilepsy, osteoporosis and fracture risk - a meta-analysis. Acta Neurol Scand 112:277–286

    Article  CAS  PubMed  Google Scholar 

  15. Baldock PA, Need AG, Moore RJ, Durbridge TC, Morris HA (1999) Discordance between bone turnover and bone loss: effects of aging and ovariectomy in the rat. J Bone Miner Res 14:1442–1448

    Article  CAS  PubMed  Google Scholar 

  16. Chiang S, Pan T (2013) Beneficial effects of phytoestrogens and their metabolites produced by intestinal microflora on bone health. Appl Microbiol Biotechnol 97:1489–1500

    Article  CAS  PubMed  Google Scholar 

  17. Tagliaferri C, Salles J, Landrier J, Giraudet C, Patrac V, Lebecque P, Davicco M, Chanet A, Pouyet C, Dhaussy A, Huertas A, Boirie Y, Wittrant Y, Coxam V, Walrand S (2015) Increased body fat mass and tissue lipotoxicity associated with ovariectomy or high-fat diet differentially affects bone and skeletal muscle metabolism in rats. Eur J Nutr 54:1139–1149

    Article  CAS  PubMed  Google Scholar 

  18. Genant HK, Baylink DJ, Gallagher JC (1989) Estrogens in the prevention of osteoporosis in postmenopausal women. Am J Obstet Gynecol 161:1842–1846

    Article  CAS  PubMed  Google Scholar 

  19. Li L, Chen X, Lv S, Dong M, Zhang L, Tu J, Yang J, Zhang L, Song Y, Xu L, Zou J (2014) Influence of exercise on bone remodeling-related hormones and cytokines in ovariectomized rats: a model of postmenopausal osteoporosis. PLoS One 9:e112845

    Article  PubMed  PubMed Central  Google Scholar 

  20. Campbell GM, Buie HR, Boyd SK (2008) Signs of irreversible architectural changes occur early in the development of experimental osteoporosis as assessed by in vivo micro-CT. Osteoporos Int 19:1409–1419

    Article  CAS  PubMed  Google Scholar 

  21. Hsu P, Tsai M, Wang S, Chen Y, Wu J, Hsu J (2016) Cortical bone morphological and trabecular bone microarchitectural changes in the mandible and femoral neck of ovariectomized rats. PLoS One 11:e154367

    Google Scholar 

  22. Guillerminet F, Fabien-Soulé V, Even PC, Tomé D, Benhamou CL, Roux C, Blais A (2012) Hydrolyzed collagen improves bone status and prevents bone loss in ovariectomized C3H/HeN mice. Osteoporos Int 23:1909–1919

    Article  CAS  PubMed  Google Scholar 

  23. Bonucci E, Ballanti P (2014) Osteoporosis—bone remodeling and animal models. Toxicol Pathol 42:957–969

    Article  CAS  PubMed  Google Scholar 

  24. Hadjidakis DJ, Androulakis II (2006) Bone remodeling. Ann N Y Acad Sci 1092:385–396

    Article  CAS  PubMed  Google Scholar 

  25. Vääräniemi J, Halleen JM, Kaarlonen K, Ylipahkala H, Alatalo SL, Andersson G, Kaija H, Vihko P, Väänänen HK (2004) Intracellular machinery for matrix degradation in bone-resorbing osteoclasts. J Bone Miner Res 19:1432–1440

    Article  PubMed  Google Scholar 

  26. Hollberg K, Nordahl J, Hultenby K, Mengarelli-Widholm S, Andersson G, Reinholt FP (2005) Polarization and secretion of cathepsin K precede tartrate-resistant acid phosphatase secretion to the ruffled border area during the activation of matrix-resorbing clasts. J Bone Miner Metab 23:441–449

    Article  CAS  PubMed  Google Scholar 

  27. Melhus G, Brorson SH, Baekkevold ES, Andersson G, Jemtland R, Olstad OK, Reinholt FP (2010) Gene expression and distribution of key bone turnover markers in the callus of estrogen-deficient, vitamin D-depleted rats. Calcif Tissue Int 87:77–89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wan DC, Shi YY, Nacamuli RP, Quarto N, Lyons KM, Longaker MT (2006) Osteogenic differentiation of mouse adipose-derived adult stromal cells requires retinoic acid and bone morphogenetic protein receptor type IB signaling. Proc Natl Acad Sci USA 103:12335–12340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Calvo MS, Eyre DR, Gundberg CM (1996) Molecular basis and clinical application of biological markers of bone turnover. Endocr Rev 17:333–368

    CAS  PubMed  Google Scholar 

  30. Clarke B (2008) Normal bone anatomy and physiology. Clin J Am Soc Nephrol 3(Suppl 3):S131–S139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bielohuby M, Matsuura M, Herbach N, Kienzle E, Slawik M, Hoeflich A, Bidlingmaier M (2010) Short-term exposure to low-carbohydrate, high-fat diets induces low bone mineral density and reduces bone formation in rats. J Bone Miner Res 25:275–284

    Article  CAS  PubMed  Google Scholar 

  32. Yamasaki M, Hasegawa S, Imai M, Takahashi N, Fukui T (2016) High-fat diet-induced obesity stimulates ketone body utilization in osteoclasts of the mouse bone. Biochem Biophys Res Commun 473:654–661

    Article  CAS  PubMed  Google Scholar 

  33. Malvi P, Piprode V, Chaube B, Pote ST, Mittal M, Chattopadhyay N, Wani MR, Bhat MK (2014) High fat diet promotes achievement of peak bone mass in young rats. Biochem Biophys Res Commun 455:133–138

    Article  CAS  PubMed  Google Scholar 

  34. Fehrendt H, Linn T, Hartmann S, Szalay G, Heiss C, Schnettler R, Lips KS (2014) Negative influence of a long-term high-fat diet on murine bone architecture. Int J Endocrinol 2014:1–9

    Article  Google Scholar 

  35. Ionova-Martin SS, Wade JM, Tang S, Shahnazari M, Ager JW, Lane NE, Yao W, Alliston T, Vaisse C, Ritchie RO (2011) Changes in cortical bone response to high-fat diet from adolescence to adulthood in mice. Osteoporos Int 22:2283–2293

    Article  CAS  PubMed  Google Scholar 

  36. Cao JJ, Gregoire BR, Gao H (2009) High-fat diet decreases cancellous bone mass but has no effect on cortical bone mass in the tibia in mice. Bone 44:1097–1104

    Article  CAS  PubMed  Google Scholar 

  37. Lac G, Cavalie H, Ebal E, Michaux O (2008) Effects of a high fat diet on bone of growing rats. Correlations between visceral fat, adiponectin and bone mass density. Lipids Health Dis 7:16

    Article  PubMed  PubMed Central  Google Scholar 

  38. Zernicke RF, Salem GJ, Barnard RJ, Schramm E (1995) Long-term, high-fat-sucrose diet alters rat femoral neck and vertebral morphology, bone mineral content, and mechanical properties. Bone 16:25–31

    Article  CAS  PubMed  Google Scholar 

  39. Ward WE, Kim S, Bruce WR (2003) A western-style diet reduces bone mass and biomechanical bone strength to a greater extent in male compared with female rats during development. Br J Nutr 90:589

    Article  CAS  PubMed  Google Scholar 

  40. Salem GJ, Zernicke RF, Barnard RJ (1992) Diet-related changes in mechanical properties of rat vertebrae. Am J Physiol 262:R318–R321

    CAS  PubMed  Google Scholar 

  41. Smith EE, Ferguson VL, Simske SJ, Gayles EC, Pagliassotti MJ (2000) Effects of high fat or high sucrose diets on rat femora mechanical and compositional properties. Biomed Sci Instrum 36:385–390

    CAS  PubMed  Google Scholar 

  42. Shu L, Beier E, Sheu T, Zhang H, Zuscik MJ, Puzas EJ, Boyce BF, Mooney RA, Xing L (2015) High-fat diet causes bone loss in young mice by promoting osteoclastogenesis through alteration of the bone marrow environment. Calcif Tissue Int 96:313–323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Inzana JA, Kung M, Shu L, Hamada D, Xing LP, Zuscik MJ, Awad HA, Mooney RA (2013) Immature mice are more susceptible to the detrimental effects of high fat diet on cancellous bone in the distal femur. Bone 57:174–183

    Article  CAS  PubMed  Google Scholar 

  44. Zengin A, Kropp B, Chevalier Y, Junnila R, Sustarsic E, Herbach N, Fanelli F, Mezzullo M, Milz S, Bidlingmaier M, Bielohuby M (2016) Low-carbohydrate, high-fat diets have sex-specific effects on bone health in rats. Eur J Nutr 55:2307–2320

    Article  CAS  PubMed  Google Scholar 

  45. Gautam J, Choudhary D, Khedgikar V, Kushwaha P, Singh RS, Singh D, Tiwari S, Trivedi R (2014) Micro-architectural changes in cancellous bone differ in female and male C57BL/6 mice with high-fat diet-induced low bone mineral density. Br J Nutr 111:1811–1821

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study is supported by National Natrual Science Foundation of China (No. 81472084). We like to thank Professor Ping Liang at Southern Hospital of Southern Medical University for his help in revising the manuscript, and Dr. Bin Huang, Song Xu, and Wenhao Wang at Southern Medical University for their help in histological analysis.

Author information

Authors and Affiliations

Authors

Contributions

Author Contributions

QZ and XW designed the experiments. XW, XW, and ZH conducted the animal experiments. XW, ZH, ZF, and XX wrote the manuscript. XW, JL, GK, and JD completed the data analysis, and QZ revised the manuscript.

Corresponding author

Correspondence to Qingan Zhu.

Ethics declarations

Conflict of interest

Xiuhua Wu, Zucheng Huang, Xiaomeng Wang, Zhaozong Fu, Junhao Liu, Zhiping Huang, Ganggang Kong, Xiaolin Xu, Jianyang Ding, and Qingan Zhu, declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

The present study was approved by the Animal Experiments Ethics Committee of Southern Medical University. The animal procedures were conducted in accordance with the Guidelines of Caring for Laboratory Animals by the Ministry of Science and Technology of the People’s Republic of China. Surgery was performed under anesthesia, and all efforts were made to minimize suffering.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, X., Huang, Z., Wang, X. et al. Ketogenic Diet Compromises Both Cancellous and Cortical Bone Mass in Mice. Calcif Tissue Int 101, 412–421 (2017). https://doi.org/10.1007/s00223-017-0292-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-017-0292-1

Keywords

Navigation