Skip to main content

Advertisement

Log in

Effects of Physical Exercise on Markers of Cellular Immunosenescence: A Systematic Review

  • Review
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Aging affects negatively the immune system, defined as immunosenescence, which increases the susceptibility of elderly persons to infection, autoimmune disease, and cancer. There are strong indications that physical exercise in elderly persons may prevent the age-related decline in immune response without significant side effects. Consequently, exercise is being considered as a safe mode of intervention to reduce immunosenescence. The aim of this review was to appraise the existing evidence regarding the impact of exercise on surface markers of cellular immunosenescence in either young and old humans or animals. PubMed and Web of Science were systematically screened, and 28 relevant articles in humans or animals were retrieved. Most of the intervention studies demonstrated that an acute bout of exercise induced increases in senescent, naïve, memory CD4+ and CD8+ T-lymphocytes and significantly elevated apoptotic lymphocytes in peripheral blood. As regards long-term effects, exercise induced increased levels of T-lymphocytes expressing CD28+ in both young and elderly subjects. Few studies found an increase in natural killer cell activity following a period of training. We can conclude that exercise has considerable effects on markers of cellular aspects of the immune system. However, very few studies have been conducted so far to investigate the effects of exercise on markers of cellular immunosenescence in elderly persons. Implications for immunosenescence need further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

CMV:

Cytomegalovirus

DC:

Dendritic cell

EBV:

Epstein–Barr virus

ER:

Endoplasmic reticulum

Fas:

Fas cell surface death receptor (CD95)

FasL:

Fas ligand

H-AE:

Hypoxic-absolute exercise

H-RE:

Hypoxic-relative exercise

HIV:

Human immunodeficiency virus

HI:

High-intensity strength exercise

ME:

Moderate-intensity exercise

Min:

Minute

NK:

Natural killer

NKG2D:

Tumor cell recognition receptor

NPC:

NK-nasopharyngeal carcinoma

LI-BFR:

Low-intensity strength exercise with blood flow restriction

RCT:

Randomized controlled trial

ROS:

Reactive oxygen species

TCR:

T-lymphocyte receptor

References

  1. Pawelec G (1999) Immunosenescence: impact in the young as well as the old? Mech Ageing Dev 108:1–7

    Article  CAS  PubMed  Google Scholar 

  2. Castle SC (2000) Clinical relevance of age-related immune dysfunction. Clin Infect Dis 31:578–585

    Article  CAS  PubMed  Google Scholar 

  3. Caruso C, Buffa S, Candore G, Colonna-Romano G, Dunn-Walters D, Kipling D, Pawelec G (2009) Mechanisms of immunosenescence. Immun Ageing I & A 6:10

    Article  CAS  Google Scholar 

  4. Davalos AR, Coppe JP, Campisi J, Desprez PY (2010) Senescent cells as a source of inflammatory factors for tumor progression. Cancer Metastasis Rev 29:273–283

    Article  PubMed  PubMed Central  Google Scholar 

  5. Coppe JP, Desprez PY, Krtolica A, Campisi J (2010) The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu Rev Pathol 5:99–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tominaga K (2015) The emerging role of senescent cells in tissue homeostasis and pathophysiology. Pathobiol Aging Age Relat Dis 5:27743

    Article  PubMed  CAS  Google Scholar 

  7. Freund A, Orjalo AV, Desprez PY, Campisi J (2010) Inflammatory networks during cellular senescence: causes and consequences. Trends Mol Med 16:238–246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. van Deursen JM (2014) The role of senescent cells in ageing. Nature 509:439–446

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Krabbe KS, Pedersen M, Bruunsgaard H (2004) Inflammatory mediators in the elderly. Exp Gerontol 39:687–699

    Article  CAS  PubMed  Google Scholar 

  10. Simpson RJ (2011) Aging, persistent viral infections, and immunosenescence: can exercise “make space”? Exerc Sport Sci Rev 39:23–33

    Article  PubMed  Google Scholar 

  11. Voehringer D, Koschella M, Pircher H (2002) Lack of proliferative capacity of human effector and memory T cells expressing killer cell lectin like receptor G1 (KLRG1). Blood 100:3698–3702

    Article  CAS  PubMed  Google Scholar 

  12. Brenchley JM, Karandikar NJ, Betts MR, Ambrozak DR, Hill BJ, Crotty LE, Casazza JP, Kuruppu J, Migueles SA, Connors M, Roederer M, Douek DC, Koup RA (2003) Expression of CD57 defines replicative senescence and antigen-induced apoptotic death of CD8+ T cells. Blood 101:2711–2720

    Article  CAS  PubMed  Google Scholar 

  13. Ouyang Q, Wagner WM, Voehringer D, Wikby A, Klatt T, Walter S, Muller CA, Pircher H, Pawelec G (2003) Age-associated accumulation of CMV-specific CD8+ T cells expressing the inhibitory killer cell lectin-like receptor G1 (KLRG1). Exp Gerontol 38:911–920

    Article  CAS  PubMed  Google Scholar 

  14. Eberl M, Engel R, Aberle S, Fisch P, Jomaa H, Pircher H (2005) Human Vgamma9/Vdelta2 effector memory T cells express the killer cell lectin-like receptor G1 (KLRG1). J Leukoc Biol 77:67–70

    CAS  PubMed  Google Scholar 

  15. Ibegbu CC, Xu YX, Harris W, Maggio D, Miller JD, Kourtis AP (2005) Expression of killer cell lectin-like receptor G1 on antigen-specific human CD8+ T lymphocytes during active, latent, and resolved infection and its relation with CD57. J Immunol 174:6088–6094

    Article  CAS  PubMed  Google Scholar 

  16. Thimme R, Appay V, Koschella M, Panther E, Roth E, Hislop AD, Rickinson AB, Rowland-Jones SL, Blum HE, Pircher H (2005) Increased expression of the NK cell receptor KLRG1 by virus-specific CD8 T cells during persistent antigen stimulation. J Virol 79:12112–12116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Onyema OO, Njemini R, Bautmans I, Renmans W, De Waele M, Mets T (2012) Cellular aging and senescence characteristics of human T-lymphocytes. Biogerontology 13:169–181

    Article  CAS  PubMed  Google Scholar 

  18. Onyema OO, Njemini R, Forti LN, Bautmans I, Aerts JL, De Waele M, Mets T (2015) Aging-associated subpopulations of human CD8+ T-lymphocytes identified by their CD28 and CD57 phenotypes. Arch Gerontol Geriatr 61:494–502

    Article  CAS  PubMed  Google Scholar 

  19. Sallusto F, Lenig D, Forster R, Lipp M, Lanzavecchia A (1999) Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 401:708–712

    Article  CAS  PubMed  Google Scholar 

  20. Koch S, Larbi A, Ozcelik D, Solana R, Gouttefangeas C, Attig S, Wikby A, Strindhall J, Franceschi C, Pawelec G (2007) Cytomegalovirus infection: a driving force in human T cell immunosenescence. Ann N Y Acad Sci 1114:23–35

    Article  CAS  PubMed  Google Scholar 

  21. Capri M, Monti D, Salvioli S, Lescai F, Pierini M, Altilia S, Sevini F, Valensin S, Ostan R, Bucci L, Franceschi C (2006) Complexity of anti-immunosenescence strategies in humans. Artif Organs 30:730–742

    Article  CAS  PubMed  Google Scholar 

  22. Chin APMJ, de Jong N, Pallast EG, Kloek GC, Schouten EG, Kok FJ (2000) Immunity in frail elderly: a randomized controlled trial of exercise and enriched foods. Med Sci Sports Exerc 32:2005–2011

    Article  Google Scholar 

  23. Petersen AM (1985) Pedersen BK (2005) The anti-inflammatory effect of exercise. J Appl Physiol 98:1154–1162

    Article  Google Scholar 

  24. Smith TP, Kennedy SL, Fleshner M (2004) Influence of age and physical activity on the primary in vivo antibody and T cell-mediated responses in men. J Appl Physiol 97:491–498

    Article  CAS  PubMed  Google Scholar 

  25. Grant RW, Mariani RA, Vieira VJ, Fleshner M, Smith TP, Keylock KT, Lowder TW, McAuley E, Hu L, Chapman-Novakofski K, Woods JA (2008) Cardiovascular exercise intervention improves the primary antibody response to keyhole limpet hemocyanin (KLH) in previously sedentary older adults. Brain Behav Immun 22:923–932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kohut ML, Cooper MM, Nickolaus MS, Russell DR, Cunnick JE (2002) Exercise and psychosocial factors modulate immunity to influenza vaccine in elderly individuals. J Gerontol Ser A Biol Sci Med Sci 57:M557–M562

    Article  Google Scholar 

  27. de Araujo AL, Silva LC, Fernandes JR, Matias Mde S, Boas LS, Machado CM, Garcez-Leme LE, Benard G (2015) Elderly men with moderate and intense training lifestyle present sustained higher antibody responses to influenza vaccine. Age (Dordr) 37:105

    Article  CAS  Google Scholar 

  28. Kohut ML, Arntson BA, Lee W, Rozeboom K, Yoon KJ, Cunnick JE, McElhaney J (2004) Moderate exercise improves antibody response to influenza immunization in older adults. Vaccine 22:2298–2306

    Article  CAS  PubMed  Google Scholar 

  29. Bachi AL, Suguri VM, Ramos LR, Mariano M, Vaisberg M, Lopes JD (2013) Increased production of autoantibodies and specific antibodies in response to influenza virus vaccination in physically active older individuals. Results Immunol 3:10–16

    Article  PubMed  PubMed Central  Google Scholar 

  30. Simpson RJ, Guy K (2010) Coupling aging immunity with a sedentary lifestyle: has the damage already been done?–a mini-review. Gerontology 56:449–458

    Article  CAS  PubMed  Google Scholar 

  31. NICE (2016) Methodology checklist: randomised controlled trials https://www.nice.org.uk/process/pmg10/chapter/appendix-c-methodology-checklist-randomised-controlled-trials

  32. Navalta JW, Sedlock DA, Park KS (2005) Blood treatment influences the yield of apoptotic lymphocytes after maximal exercise. Med Sci Sports Exerc 37:369–373

    Article  PubMed  Google Scholar 

  33. Simpson RJ, Cosgrove C, Ingram LA, Florida-James GD, Whyte GP, Pircher H, Guy K (2008) Senescent T-lymphocytes are mobilised into the peripheral blood compartment in young and older humans after exhaustive exercise. Brain Behav Immun 22:544–551

    Article  CAS  PubMed  Google Scholar 

  34. Green KJ (1985) Rowbottom DG (2003) Exercise-induced changes to in vitro T-lymphocyte mitogen responses using CFSE. J Appl Physiol 95:57–63

    Article  Google Scholar 

  35. Park KS, Sedlock DA, Navalta JW, Lee MG, Kim SH (2011) Leukocyte apoptosis and pro-/anti-apoptotic proteins following downhill running. Eur J Appl Physiol 111:2349–2357

    Article  PubMed  Google Scholar 

  36. Mooren FC, Bloming D, Lechtermann A, Lerch MM (1985) Volker K (2002) Lymphocyte apoptosis after exhaustive and moderate exercise. J Appl Physiol 93:147–153

    Article  Google Scholar 

  37. Wang JS, Chen WL, Weng TP (2011) Hypoxic exercise training reduces senescent T-lymphocyte subsets in blood. Brain Behav Immun 25:270–278

    Article  CAS  PubMed  Google Scholar 

  38. Wang JS, Weng TP (2011) Hypoxic exercise training promotes antitumour cytotoxicity of natural killer cells in young men. Clin Sci (Lond) 121:343–353

    Article  CAS  Google Scholar 

  39. Simpson RJ, Cosgrove C, Chee MM, McFarlin BK, Bartlett DB, Spielmann G, O’Connor DP, Pircher H, Shiels PG (2010) Senescent phenotypes and telomere lengths of peripheral blood T-cells mobilized by acute exercise in humans. Exerc Immunol Rev 16:40–55

    PubMed  Google Scholar 

  40. Suchanek O, Podrazil M, Fischerova B, Bocinska H, Budinsky V, Stejskal D, Spisek R, Bartunkova J, Kolar P (2010) Intensive physical activity increases peripheral blood dendritic cells. Cell Immunol 266:40–45

    Article  CAS  PubMed  Google Scholar 

  41. Simpson RJ, Florida-James GD, Cosgrove C, Whyte GP, Macrae S, Pircher H (1985) Guy K (2007) High-intensity exercise elicits the mobilization of senescent T lymphocytes into the peripheral blood compartment in human subjects. J Appl Physiol 103:396–401

    Article  CAS  Google Scholar 

  42. Zimmer P, Bloch W, Schenk A, Zopf EM, Hildebrandt U, Streckmann F, Beulertz J, Koliamitra C, Schollmayer F, Baumann F (2015) Exercise-induced natural killer cell activation is driven by epigenetic modifications. Int J Sports Med 36:510–515

    Article  CAS  PubMed  Google Scholar 

  43. Dorneles GP, Colato AS, Galvao SL, Ramis TR, Ribeiro JL, Romao PR, Peres A (2015) Acute response of peripheral CCr5 chemoreceptor and NK cells in individuals submitted to a single session of low-intensity strength exercise with blood flow restriction. Clin Physiol Funct Imag

  44. Wang JS (1985) Wu CK (2009) Systemic hypoxia affects exercise-mediated antitumor cytotoxicity of natural killer cells. J Appl Physiol 107:1817–1824

    Article  CAS  Google Scholar 

  45. Evans ES, Hackney AC, McMurray RG, Randell SH, Muss HB, Deal AM, Battaglini CL (2015) Impact of acute intermittent exercise on natural killer cells in breast cancer survivors. Integr Cancer Ther

  46. Bruunsgaard H, Jensen MS, Schjerling P, Halkjaer-Kristensen J, Ogawa K, Skinhoj P, Pedersen BK (1999) Exercise induces recruitment of lymphocytes with an activated phenotype and short telomeres in young and elderly humans. Life Sci 65:2623–2633

    Article  CAS  PubMed  Google Scholar 

  47. Ceddia MA, Price EA, Kohlmeier CK, Evans JK, Lu Q, McAuley E, Woods JA (1999) Differential leukocytosis and lymphocyte mitogenic response to acute maximal exercise in the young and old. Med Sci Sports Exerc 31:829–836

    Article  CAS  PubMed  Google Scholar 

  48. Woods JA, Ceddia MA, Wolters BW, Evans JK, Lu Q, McAuley E (1999) Effects of 6 months of moderate aerobic exercise training on immune function in the elderly. Mech Ageing Dev 109:1–19

    Article  CAS  PubMed  Google Scholar 

  49. Crist DM, Mackinnon LT, Thompson RF, Atterbom HA, Egan PA (1989) Physical exercise increases natural cellular-mediated tumor cytotoxicity in elderly women. Gerontology 35:66–71

    Article  CAS  PubMed  Google Scholar 

  50. Scanga CB, Verde TJ, Paolone AM, Andersen RE, Wadden TA (1998) Effects of weight loss and exercise training on natural killer cell activity in obese women. Med Sci Sports Exerc 30:1666–1671

    Article  CAS  PubMed  Google Scholar 

  51. Nieman DC, Henson DA, Gusewitch G, Warren BJ, Dotson RC, Butterworth DE, Nehlsen-Cannarella SL (1993) Physical activity and immune function in elderly women. Med Sci Sports Exerc 25:823–831

    Article  CAS  PubMed  Google Scholar 

  52. Campbell PT, Wener MH, Sorensen B, Wood B, Chen-Levy Z, Potter JD, McTiernan A (1985) Ulrich CM (2008) Effect of exercise on in vitro immune function: a 12-month randomized, controlled trial among postmenopausal women. J Appl Physiol 104:1648–1655

    Article  Google Scholar 

  53. Shimizu K, Kimura F, Akimoto T, Akama T, Tanabe K, Nishijima T, Kuno S, Kono I (2008) Effect of moderate exercise training on T-helper cell subpopulations in elderly people. Exerc Immunol Rev 14:24–37

    PubMed  Google Scholar 

  54. Shimizu K, Suzuki N, Imai T, Aizawa K, Nanba H, Hanaoka Y, Kuno S, Mesaki N, Kono I, Akama T (2011) Monocyte and T-cell responses to exercise training in elderly subjects. J Strength Cond Res 25:2565–2572

    Article  PubMed  Google Scholar 

  55. Kapasi ZF, Ouslander JG, Schnelle JF, Kutner M, Fahey JL (2003) Effects of an exercise intervention on immunologic parameters in frail elderly nursing home residents. J Gerontol A Biol Sci Med Sci 58:636–643

    Article  PubMed  Google Scholar 

  56. Raso V, Benard G, DASD AJ, Natale VM (2007) Effect of resistance training on immunological parameters of healthy elderly women. Med Sci Sports Exerc 39:2152–2159

    Article  PubMed  Google Scholar 

  57. Fairey AS, Courneya KS, Field CJ, Bell GJ, Jones LW (1985) Mackey JR (2005) Randomized controlled trial of exercise and blood immune function in postmenopausal breast cancer survivors. J Appl Physiol 98:1534–1540

    Article  Google Scholar 

  58. Hoffman-Goetz L, Quadrilatero J (2003) Treadmill exercise in mice increases intestinal lymphocyte loss via apoptosis. Acta Physiol Scand 179:289–297

    Article  CAS  PubMed  Google Scholar 

  59. Kruger K, Frost S, Most E, Volker K, Pallauf J, Mooren FC (2009) Exercise affects tissue lymphocyte apoptosis via redox-sensitive and Fas-dependent signaling pathways. Am J Physiol Regul Integr Comp Physiol 296:R1518–R1527

    Article  CAS  PubMed  Google Scholar 

  60. Genestier L, Bonnefoy-Berard N, Revillard JP (1999) Apoptosis of activated peripheral T cells. Transpl Proc 31:33S–38S

    Article  CAS  Google Scholar 

  61. Krammer PH, Arnold R, Lavrik IN (2007) Life and death in peripheral T cells. Nat Rev Immunol 7:532–542

    Article  CAS  PubMed  Google Scholar 

  62. Kruger K, Mooren FC (2014) Exercise-induced leukocyte apoptosis. Exerc Immunol Rev 20:117–134

    PubMed  Google Scholar 

  63. Mooren FC, Kruger K (2015) Exercise, autophagy, and apoptosis. Prog Mol Biol Transl Sci 135:407–422

    Article  CAS  PubMed  Google Scholar 

  64. Phaneuf S, Leeuwenburgh C (2001) Apoptosis and exercise. Med Sci Sports Exerc 33:393–396

    Article  CAS  PubMed  Google Scholar 

  65. Turner JE (2016) Is immunosenescence influenced by our lifetime “dose” of exercise? Biogerontology 17:581–602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Simpson RJ, Lowder TW, Spielmann G, Bigley AB, LaVoy EC, Kunz H (2012) Exercise and the aging immune system. Ageing Res Rev 11:404–420

    Article  CAS  PubMed  Google Scholar 

  67. Cerwenka A, Lanier LL (2001) Natural killer cells, viruses and cancer. Nat Rev Immunol 1:41–49

    Article  CAS  PubMed  Google Scholar 

  68. Hayhoe RP, Henson SM, Akbar AN, Palmer DB (2010) Variation of human natural killer cell phenotypes with age: identification of a unique KLRG1-negative subset. Hum Immunol 71:676–681

    Article  CAS  PubMed  Google Scholar 

  69. Gayoso I, Sanchez-Correa B, Campos C, Alonso C, Pera A, Casado JG, Morgado S, Tarazona R, Solana R (2011) Immunosenescence of human natural killer cells. J Innate Immun 3:337–343

    Article  CAS  PubMed  Google Scholar 

  70. Sansoni P, Cossarizza A, Brianti V, Fagnoni F, Snelli G, Monti D, Marcato A, Passeri G, Ortolani C, Forti E et al (1993) Lymphocyte subsets and natural killer cell activity in healthy old people and centenarians. Blood 82:2767–2773

    CAS  PubMed  Google Scholar 

  71. Franceschi C, Monti D, Sansoni P, Cossarizza A (1995) The immunology of exceptional individuals: the lesson of centenarians. Immunol Today 16:12–16

    Article  CAS  PubMed  Google Scholar 

  72. Sansoni P, Brianti V, Fagnoni F, Snelli G, Marcato A, Passeri G, Monti D, Cossarizza A, Franceschi C (1992) NK cell activity and T-lymphocyte proliferation in healthy centenarians. Ann N Y Acad Sci 663:505–507

    Article  CAS  PubMed  Google Scholar 

  73. Ogata K, An E, Shioi Y, Nakamura K, Luo S, Yokose N, Minami S, Dan K (2001) Association between natural killer cell activity and infection in immunologically normal elderly people. Clin Exp Immunol 124:392–397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ogata K, Yokose N, Tamura H, An E, Nakamura K, Dan K, Nomura T (1997) Natural killer cells in the late decades of human life. Clin Immunol Immunopathol 84:269–275

    Article  CAS  PubMed  Google Scholar 

  75. Targan S, Britvan L, Dorey F (1981) Activation of human NKCC by moderate exercise: increased frequency of NK cells with enhanced capability of effector–target lytic interactions. Clin Exp Immunol 45:352–360

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Edwards AJ, Bacon TH, Elms CA, Verardi R, Felder M, Knight SC (1984) Changes in the populations of lymphoid cells in human peripheral blood following physical exercise. Clin Exp Immunol 58:420–427

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Ahmad F, Hong HS, Jackel M, Jablonka A, Lu IN, Bhatnagar N, Eberhard JM, Bollmann BA, Ballmaier M, Zielinska-Skowronek M, Schmidt RE, Meyer-Olson D (2014) High frequencies of polyfunctional CD8+ NK cells in chronic HIV-1 infection are associated with slower disease progression. J Virol 88:12397–12408

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Nielsen CM, White MJ, Goodier MR, Riley EM (2013) Functional significance of CD57 expression on human NK cells and relevance to disease. Front Immunol 4:422

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Kared H, Martelli S, Ng TP, Pender SL, Larbi A (2016) CD57 in human natural killer cells and T-lymphocytes. Cancer Immunol Immunotherapy: CII 65:441–452

    Article  CAS  Google Scholar 

  80. Long EO, Kim HS, Liu D, Peterson ME, Rajagopalan S (2013) Controlling natural killer cell responses: integration of signals for activation and inhibition. Annu Rev Immunol 31:227–258

    Article  CAS  PubMed  Google Scholar 

  81. Raulet DH (2003) Roles of the NKG2D immunoreceptor and its ligands. Nat Rev Immunol 3:781–790

    Article  CAS  PubMed  Google Scholar 

  82. Walsh NP, Gleeson M, Shephard RJ, Woods JA, Bishop NC, Fleshner M, Green C, Pedersen BK, Hoffman-Goetz L, Rogers CJ, Northoff H, Abbasi A, Simon P (2011) Position statement. Part one: Immune function and exercise. Exerc Immunol Rev 17:6–63

    PubMed  Google Scholar 

  83. Pereira GB, Prestes J, Tibana RA, Shiguemoto GE, Navalta J, Perez SE (2012) Acute resistance training affects cell surface markers for apoptosis and migration in CD4(+) and CD8(+) lymphocytes. Cell Immunol 279:134–139

    Article  CAS  PubMed  Google Scholar 

  84. Nagatomi R (2006) The implication of alterations in leukocyte subset counts on immune function. Exerc Immunol Rev 12:54–71

    PubMed  Google Scholar 

  85. Fairey AS, Courneya KS, Field CJ, Mackey JR (2002) Physical exercise and immune system function in cancer survivors: a comprehensive review and future directions. Cancer 94:539–551

    Article  PubMed  Google Scholar 

  86. Pedersen BK, Steensberg A (2002) Exercise and hypoxia: effects on leukocytes and interleukin-6-shared mechanisms? Med Sci Sports Exerc 34:2004–2013

    Article  CAS  PubMed  Google Scholar 

  87. Mocchegiani E, Malavolta M (2004) NK and NKT cell functions in immunosenescence. Aging Cell 3:177–184

    Article  CAS  PubMed  Google Scholar 

  88. Vallejo AN (2005) CD28 extinction in human T cells: altered functions and the program of T-cell senescence. Immunol Rev 205:158–169

    Article  CAS  PubMed  Google Scholar 

  89. Cerdan C, Martin Y, Courcoul M, Brailly H, Mawas C, Birg F, Olive D (1992) Prolonged IL-2 receptor alpha/CD25 expression after T cell activation via the adhesion molecules CD2 and CD28. Demonstration of combined transcriptional and post-transcriptional regulation. J Immunol 149:2255–2261

    CAS  PubMed  Google Scholar 

  90. Jenkins MK, Taylor PS, Norton SD, Urdahl KB (1991) CD28 delivers a costimulatory signal involved in antigen-specific IL-2 production by human T cells. J Immunol 147:2461–2466

    CAS  PubMed  Google Scholar 

  91. Beck JM, Blackmon MB, Rose CM, Kimzey SL, Preston AM, Green JM (2003) T cell costimulatory molecule function determines susceptibility to infection with Pneumocystis carinii in mice. J Immunol 171:1969–1977

    Article  CAS  PubMed  Google Scholar 

  92. Effros RB (2000) Costimulatory mechanisms in the elderly. Vaccine 18:1661–1665

    Article  CAS  PubMed  Google Scholar 

  93. Bryl E, Vallejo AN, Weyand CM, Goronzy JJ (2001) Down-regulation of CD28 expression by TNF-alpha. J Immunol 167:3231–3238

    Article  CAS  PubMed  Google Scholar 

  94. Ma S, Ochi H, Cui L, Zhang J, He W (2003) Hydrogen peroxide induced down-regulation of CD28 expression of Jurkat cells is associated with a change of site alpha-specific nuclear factor binding activity and the activation of caspase-3. Exp Gerontol 38:1109–1118

    Article  CAS  PubMed  Google Scholar 

  95. Wang JS, Lin HY, Cheng ML, Wong MK (2007) Chronic intermittent hypoxia modulates eosinophil- and neutrophil-platelet aggregation and inflammatory cytokine secretion caused by strenuous exercise in men. J Appl Physiol (1985) 103:305–314

    Article  CAS  Google Scholar 

  96. Kruger K, Agnischock S, Lechtermann A, Tiwari S, Mishra M, Pilat C, Wagner A, Tweddell C, Gramlich I, Mooren FC (2011) Intensive resistance exercise induces lymphocyte apoptosis via cortisol and glucocorticoid receptor-dependent pathways. J Appl Physiol (1985) 110:1226–1232

    Article  CAS  Google Scholar 

  97. Chan AT, Teo PM, Johnson PJ (2002) Nasopharyngeal carcinoma. Ann Oncol 13:1007–1015

    Article  CAS  PubMed  Google Scholar 

  98. Ho JH (1978) An epidemiologic and clinical study of nasopharyngeal carcinoma. Int J Radiat Oncol Biol Phys 4:182–198

    Article  CAS  PubMed  Google Scholar 

  99. Agrawal A, Sridharan A, Prakash S, Agrawal H (2012) Dendritic cells and aging: consequences for autoimmunity. Expert Rev Clin Immunol 8:73–80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Vivar N, Thang PH, Atlas A, Chiodi F, Rethi B (2008) Potential role of CD8+ CD28 T lymphocytes in immune activation during HIV-1 infection. AIDS 22:1083–1086

    Article  CAS  PubMed  Google Scholar 

  101. Le Priol Y, Puthier D, Lecureuil C, Combadiere C, Debre P, Nguyen C, Combadiere B (2006) High cytotoxic and specific migratory potencies of senescent CD8+ CD57+ cells in HIV-infected and uninfected individuals. J Immunol 177:5145–5154

    Article  PubMed  Google Scholar 

  102. Mendes AV, Kallas EG, Benard G, Pannuti CS, Menezes R, Dulley FL, Evans TG, Salomao R, Machado CM (2008) Impact of cytomegalovirus and grafts versus host disease on the dynamics of CD57+ CD28CD8+ T cells after bone marrow transplant. Clinics (Sao Paulo) 63:667–676

    Article  Google Scholar 

  103. Labalette M, Salez F, Pruvot FR, Noel C, Dessaint JP (1994) CD8 lymphocytosis in primary cytomegalovirus (CMV) infection of allograft recipients: expansion of an uncommon CD8+CD57 subset and its progressive replacement by CD8+ CD57+ T cells. Clin Exp Immunol 95:465–471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Wallace DL, Masters JE, De Lara CM, Henson SM, Worth A, Zhang Y, Kumar SR, Beverley PC, Akbar AN, Macallan DC (2011) Human cytomegalovirus-specific CD8(+) T-cell expansions contain long-lived cells that retain functional capacity in both young and elderly subjects. Immunology 132:27–38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Weng NP, Akbar AN, Goronzy J (2009) CD28(−) T cells: their role in the age-associated decline of immune function. Trends Immunol 30:306–312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Petrova M, Muhtarova M, Nikolova M, Magaev S, Taskov H, Nikolovska D, Krastev Z (2006) Chronic Epstein-Barr virus-related hepatitis in immunocompetent patients. World J Gastroenterol 12:5711–5716

    Article  PubMed  PubMed Central  Google Scholar 

  107. Manfras BJ, Weidenbach H, Beckh KH, Kern P, Moller P, Adler G, Mertens T, Boehm BO (2004) Oligoclonal CD8 + T-cell expansion in patients with chronic hepatitis C is associated with liver pathology and poor response to interferon-alpha therapy. J Clin Immunol 24:258–271

    Article  CAS  PubMed  Google Scholar 

  108. Isa A, Kasprowicz V, Norbeck O, Loughry A, Jeffery K, Broliden K, Klenerman P, Tolfvenstam T, Bowness P (2005) Prolonged activation of virus-specific CD8+ T cells after acute B19 infection. PLoS Med 2:e343

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Fateminasab FD, Shahgasempour S, Mirsaeidi SM, Tabarsi P, Mansoori SD, Entezami Z (2006) Increased activation and expansion of a CD57+ subset within peripheral CD8+ T lymphocytes in Mycobacterium tuberculosis-infected patients. Arch Iran Med 9:53–57

    PubMed  Google Scholar 

  110. Sada-Ovalle I, Torre-Bouscoulet L, Valdez-Vazquez R, Martinez-Cairo S, Zenteno E, Lascurain R (2006) Characterization of a cytotoxic CD57+ T cell subset from patients with pulmonary tuberculosis. Clin Immunol 121:314–323

    Article  CAS  PubMed  Google Scholar 

  111. Bernal-Fernandez G, Espinosa-Cueto P, Leyva-Meza R, Mancilla N, Mancilla R (2010) Decreased expression of T-cell costimulatory molecule CD28 on CD4 and CD8 T cells of mexican patients with pulmonary tuberculosis. Tuberc Res Treat 2010:517547

    PubMed  PubMed Central  Google Scholar 

  112. Strioga M, Pasukoniene V, Characiejus D (2011) CD8(+) CD28(-) and CD8(+) CD57(+) T cells and their role in health and disease. Immunology 134:17–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Tsukishiro T, Donnenberg AD, Whiteside TL (2003) Rapid turnover of the CD8(+)CD28(-) T-cell subset of effector cells in the circulation of patients with head and neck cancer. Cancer Immunol Immunother CII 52:599–607

    Article  PubMed  Google Scholar 

  114. Casado JG, Soto R, DelaRosa O, Peralbo E, del Carmen Munoz-Villanueva M, Rioja L, Pena J, Solana R, Tarazona R (2005) CD8 T cells expressing NK associated receptors are increased in melanoma patients and display an effector phenotype. Cancer Immunol Immunother CII 54:1162–1171

    Article  CAS  PubMed  Google Scholar 

  115. Meloni F, Morosini M, Solari N, Passadore I, Nascimbene C, Novo M, Ferrari M, Cosentino M, Marino F, Pozzi E, Fietta AM (2006) Foxp3 expressing CD4+ CD25+ and CD8+ CD28 T regulatory cells in the peripheral blood of patients with lung cancer and pleural mesothelioma. Hum Immunol 67:1–12

    Article  CAS  PubMed  Google Scholar 

  116. Characiejus D, Kazlauskaite N, Pasukoniene V, Petraitis T, Mauricas M (2000) Predictive value of CD8(high) CD57(+) lymphocyte subset in interferon-alpha (IFN-alpha) therapy of patients with advanced renal cell carcinoma. Ann Oncol 11:75–76

    Article  Google Scholar 

  117. Okada T, Iiai T, Kawachi Y, Moroda T, Takii Y, Hatakeyama K, Abo T (1995) Origin of Cd57(+) T-cells which increase at tumor sites in patients with colorectal-cancer. Clin Exp Immunol 102:159–166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Bigley AB, Spielmann G, LaVoy ECP, Simpson RJ (2013) Can exercise-related improvements in immunity influence cancer prevention and prognosis in the elderly? Maturitas 76:51–56

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Hung Cao Dinh was supported by PhD scholarship from People Committee of Hochiminh City, Vietnam (35-QĐ/BTCTU).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Bautmans.

Ethics declarations

Conflict of interest

H. Cao Dinh, I. Beyer, T. Mets, O.O.Onyema, R. Njemini, W. Renmans, M. De Waele, K. Jochmans, S. Vander Meeren, I. Bautmans have no conflicts of interest to disclose.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao Dinh, H., Beyer, I., Mets, T. et al. Effects of Physical Exercise on Markers of Cellular Immunosenescence: A Systematic Review. Calcif Tissue Int 100, 193–215 (2017). https://doi.org/10.1007/s00223-016-0212-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-016-0212-9

Keywords

Navigation