Skip to main content

Advertisement

Log in

Ibandronate Increases Sclerostin Levels and Bone Strength in Male Patients with Idiopathic Osteoporosis

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

The pathomechanism of male idiopathic osteoporosis (MIO) differs from postmenopausal osteoporosis with regard to alterations in osteoblast activity. We evaluated intravenous ibandronate (IBN) in 25 MIO patients with fragility fractures in a prospective, monocentric, single-arm, and open-label study for 24 months. The impact and changes of sclerostin (Scl), Dickkopf-1 (DKK-1), CTX, and PINP were examined. Additionally, volumetric cortical, trabecular and areal bone mineral density (BMD), trabecular bone score (TBS), and finite element analyses (FEA) were evaluated. Compared to baseline, median Scl levels were increased after 1 month (Δ 121 %, p < 0.0001) and remained elevated for 12 months. DKK-1 decreased (p < 0.001) to a lesser extent until month 9 with values comparable to baseline at study endpoint. Early changes (baseline–month 1) of Scl negatively correlated with early changes of DKK-1 (−0.72), CTX (−0.82), and PINP (−0.55; p < 0.005 for all). The overall changes over the 24 months study period of Scl negatively correlated with decreased CTX (−0.32) and DKK-1 levels (−0.57, p < 0.0001 for both); CTX and PINP changes positively correlated at each time point (p < 0.001). Volumetric hip BMD increased by 12 and 18 %, respectively (p < 0.0001 for both). Cross-sectional moment of inertia and section modulus for total hip significantly improved (p < 0.05 for all). Areal BMD at total hip, spine, and TBS increased. FEA displayed an increase in bone strength both in the hip (17 %) and vertebrae (13 %, all p < 0.0001) at anatomical sites susceptible for fragility fracture. IBN increases Scl and improves cortical and trabecular bone strength with early and ongoing vigorous suppression of bone resorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Orwoll ES, Klein RF (2008) Osteoporosis in men: epidemiology, pathophysiology, and clinical characterization. In: Marcus R, Feldman D, Nelson DA, Rosen CJ (eds) Osteoporosis, vol 2, 3rd edn. Academic Press, New York

    Google Scholar 

  2. Patsch JM, Kohler T, Berzlanovich A, Muschitz C, Bieglmayr C, Roschger P, Resch H, Pietschmann P (2011) Trabecular bone microstructure and local gene expression in iliac crest biopsies of men with idiopathic osteoporosis. J Bone Miner Res 26:1584–1592. doi:10.1002/jbmr.344

    Article  CAS  PubMed  Google Scholar 

  3. Fratzl-Zelman N, Roschger P, Misof BM, Nawrot-Wawrzyniak K, Pötter-Lang S, Muschitz C, Resch H, Klaushofer K, Zwettler E (2011) Fragility fractures in men with idiopathic osteoporosis are associated with undermineralization of the bone matrix without evidence of increased bone turnover. Calcif Tissue Int 88:378–387. doi:10.1007/s00223-011-9466-4

    Article  CAS  PubMed  Google Scholar 

  4. Legrand E, Hedde C, Gallois Y, Degasne I, Boux de Casson F, Mathieu E, Baslé MF, Chappard D, Audran M (2011) Osteoporosis in men: a potential role for the sex hormone binding globulin. Bone 29:90–95

    Article  Google Scholar 

  5. Van Pottelbergh I, Goemaere S, Zmierczak H, Kaufman JM (2004) Perturbed sex steroid status in men with idiopathic osteoporosis and their sons. J Clin Endocrinol Metab 89:4949–4953. doi:10.1210/jc.2003-032081

    Article  PubMed  Google Scholar 

  6. Johansson AG, Eriksen EF, Lindh E, Langdahl B, Blum WF, Lindahl A, Ljunggren O, Ljunghall S (1997) Reduced serum levels of the growth hormone dependent insulin-like growth factor binding protein and a negative bone balance at the level of individual remodeling units in idiopathic osteoporosis in men. J Clin Endocrinol Metab 82:2795–2798. doi:10.1210/jcem.82.9.4148

    CAS  PubMed  Google Scholar 

  7. Kurland ES, Rosen CJ, Cosman F, McMahon D, Chan F, Shane E, Lindsay R, Dempster D, Bilezikian JP (1997) Insulin-like growth factor-I in men with idiopathic osteoporosis. J Clin Endocrinol Metab 82:2799–2805. doi:10.1210/jcem.82.9.4253

    CAS  PubMed  Google Scholar 

  8. Patel MB, Arden NK, Masterson LM, Phillips DI, Swaminathan R, Syddall HE, Byrne CD, Wood PJ, Cooper C, Holt RI et al (2005) Investigating the role of the growth hormone-insulin-like growth factor (GH-IGF) axis as a determinant of male bone mineral density (BMD). Bone 37:833–841. doi:10.1016/j.bone.2005.06.016

    Article  CAS  PubMed  Google Scholar 

  9. Gillberg P, Mallmin H, Petrén-Mallmin M, Ljunghall S, Nilsson AG (2002) Two years of treatment with recombinant human growth hormone increases bone mineral density in men with idiopathic osteoporosis. J Clin Endocrinol Metab 87:4900–4906. doi:10.1210/jc.2002-020231

    Article  CAS  PubMed  Google Scholar 

  10. Föger-Samwald U, Patsch JM, Schamall D, Alaghebandan A, Deutschmann J, Salem S, Mousavi M, Pietschmann P (2014) Molecular evidence of osteoblast dysfunction in elderly men with osteoporotic hip fractures. Exp Gerontol 57:114–121. doi:10.1016/j.exger.2014.05.014

    Article  PubMed  Google Scholar 

  11. Misof BM, Patsch JM, Roschger P, Muschitz C, Gamsjaeger S, Paschalis EP, Prokop E, Klaushofer K, Zwettler E (2014) Intravenous treatment with ibandronate normalizes bone matrix mineralization and reduces cortical porosity after two years in male osteoporosis: a paired biopsy study. J Bone Miner Res 29:440–449. doi:10.1002/jbmr.2035

    Article  CAS  PubMed  Google Scholar 

  12. Mosekilde L, Vestergaard P, Rejnmark L (2013) The pathogenesis, treatment and prevention of osteoporosis in men. Drugs 73:15–29. doi:10.1007/s40265-012-0003-1

    Article  CAS  PubMed  Google Scholar 

  13. Chapurlat RD, Laroche M, Thomas T, Rouanet S, Delmas PD, de Vernejoul MC (2013) Effect of oral monthly ibandronate on bone microarchitecture in women with osteopenia-a randomized placebo-controlled trial. Osteoporos Int 24:311–320. doi:10.1007/s00198-012-1947-4

    Article  CAS  PubMed  Google Scholar 

  14. Catalano A, Morabito N, Basile G, Brancatelli S, Cucinotta D, Lasco A (2013) Zoledronic acid acutely increases sclerostin serum levels in women with postmenopausal osteoporosis. J Clin Endocrinol Metab 98:1911–1915. doi:10.1210/jc.2012-4039

    Article  CAS  PubMed  Google Scholar 

  15. Anastasilakis AD, Polyzos SA, Gkiomisi A, Bisbinas I, Gerou S, Makras P (2013) Comparative effect of zoledronic acid versus denosumab on serum sclerostin and dickkopf-1 levels of naive postmenopausal women with low bone mass: a randomized, head-to-head clinical trial. J Clin Endocrinol Metab 98:3206–3212. doi:10.1210/jc.2013-1402

    Article  CAS  PubMed  Google Scholar 

  16. Orwoll E, Ettinger M, Weiss S, Miller P, Kendler D, Graham J, Adami S, Weber K, Lorenc R, Pietschmann P, Vandormael K, Lombardi A (2000) Alendronate for the treatment of osteoporosis in men. N Engl J Med 343:604–610. doi:10.1056/NEJM200008313430902

    Article  CAS  PubMed  Google Scholar 

  17. Silva BC, Boutroy S, Zhang C, McMahon DJ, Zhou B, Wang J et al (2013) Trabecular bone score (TBS)—a novel method to evaluate bone microarchitectural texture in patients with primary hyperparathyroidism. J Clin Endocrinol Metab 98:1963–1970. doi:10.1210/jc.2012-4255

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Silva BC, Leslie WD, Resch H, Lamy O, Lesnyak O, Binkley N, McCloskey EV, Kanis JA, Bilezikian JP (2014) Trabecular bone score: a noninvasive analytical method based upon the DXA image. J Bone Miner Res 29:518–530. doi:10.1002/jbmr.2176

    Article  PubMed  Google Scholar 

  19. Dall’Ara E, Schmidt R, Pahr D, Varga P, Chevalier Y, Patsch J, Kainberger F, Zysset P (2010) A nonlinear finite element model validation study based on a novel experimental technique for inducing anterior wedge-shape fractures in human vertebral bodies in vitro. J Biomech 43:2374–2380. doi:10.1016/j.jbiomech.2010.04.023

    Article  PubMed  Google Scholar 

  20. Dall’Ara E, Luisier B, Schmidt R, Kainberger F, Zysset P, Pahr D (2013) A nonlinear QCT-based finite element model validation study for the human femur tested in two configurations in vitro. Bone 52:27–38. doi:10.1016/j.bone.2012.09.006

    Article  PubMed  Google Scholar 

  21. Chung YE, Lee SH, Lee SY, Kim SY, Kim HH, Mirza FS, Lee SK, Lorenzo JA, Kim GS, Koh JM (2012) Long-term treatment with raloxifene, but not bisphosphonates, reduces circulating sclerostin levels in postmenopausal women. Osteoporos Int 23:1235–1243. doi:10.1007/s00198-011-1675-1

    Article  CAS  PubMed  Google Scholar 

  22. Polyzos SA, Anastasilakis AD, Bratengeier C, Woloszczuk W, Papatheodorou A, Terpos E (2012) Serum sclerostin levels positively correlate with lumbar spinal bone mineral density in postmenopausal women-the six-month effect of risedronate and teriparatide. Osteoporos Int 23:1171–1176. doi:10.1007/s00198-010-1525-6

    Article  CAS  PubMed  Google Scholar 

  23. Ota K, Quint P, Ruan M, Pederson L, Westendorf JJ, Khosla S, Oursler MJ (2013) Sclerostin is expressed in osteoclasts from aged mice and reduces osteoclast-mediated stimulation of mineralization. J Cell Biochem 114:1901–1907. doi:10.1002/jcb.24537

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Russel RG, Watts NB, Ebetino FH, Rogers MJ (2008) Mechanisms of action of bisphosphonates: similarities and differences and their potential influence on clinical efficacy. Osteoporos Int 19:733–759. doi:10.1007/s00198-007-0540-8

    Article  Google Scholar 

  25. Gatti D, Viapiana O, Idolazzi L, Fracassi E, Ionescu C, Dartizio C, Troplini S, Kunnathully V, Adami S, Rossini M (2014) Distinct effect of zoledronate and clodronate on circulating levels of DKK1 and sclerostin in women with postmenopausal osteoporosis. Bone 67:189–192. doi:10.1016/j.bone.2014.06.037

    Article  CAS  PubMed  Google Scholar 

  26. Stains JP, Watkins MP, Grimston SK, Hebert C, Civitelli R (2014) Molecular mechanisms of osteoblast/osteocyte regulation by connexin43. Calcif Tissue Int 94:55–67. doi:10.1007/s00223-013-9742-6

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Plotkin LI, Bellido T (2013) Beyond gap junctions: connexin43 and bone cell signaling. Bone 52:157–166. doi:10.1016/j.bone.2012.09.030

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Bivi N, Nelson MT, Faillace ME, Li J, Miller LM, Plotkin LI (2012) Deletion of Cx43 from osteocytes results in defective bone material properties but does not decrease extrinsic strength in cortical bone. Calcif Tissue Int 91:215–224. doi:10.1007/s00223-012-9628-z

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Bellido T, Plotkin LI (2011) Novel actions of bisphosphonates in bone: preservation of osteoblast and osteocyte viability. Bone 49:50–55. doi:10.1016/j.bone.2010.08.008

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Maruotti N, Corrado A, Neve A, Cantatore FP (2012) Bisphosphonates: effects on osteoblast. Eur J Clin Pharmacol 68:1013–1018. doi:10.1007/s00228-012-1216-7

    Article  CAS  PubMed  Google Scholar 

  31. Sapir-Koren R, Livshits G (2014) Osteocyte control of bone remodeling: is sclerostin a key molecular coordinator of the balanced bone resorption-formation cycles? Osteoporos Int 25:2685–2700. doi:10.1007/s00198-014-2808-0

    Article  CAS  PubMed  Google Scholar 

  32. Li X, Grisanti M, Fan W, Asuncion FJ, Tan HL, Dwyer D et al (2011) Dickkopf-1 regulates bone formation in young growing rodents and upon traumatic injury. J Bone Miner Res 26:2610–2621. doi:10.1002/jbmr.472

    Article  CAS  PubMed  Google Scholar 

  33. Muschitz C, Kocijan R, Fahrleitner-Pammer A, Pavo I, Haschka J, Schima W, Kapiotis S, Resch H (2014) Overlapping and continued alendronate or raloxifene administration in patients on teriparatide: effects on areal and volumetric bone mineral density—the CONFORS Study. J Bone Miner Res 29:1777–1785. doi:10.1002/jbmr.2216

    Article  CAS  PubMed  Google Scholar 

  34. Genant HK, Lewiecki EM, Fuerst T, Fries M (2012) Effect of monthly ibandronate on hip structural geometry in men with low bone density. Osteoporos Int 23:257–265. doi:10.1007/s00198-011-1732-9

    Article  CAS  PubMed  Google Scholar 

  35. Orwoll ES, Binkley NC, Lewiecki EM, Gruntmanis U, Fries MA, Dasic G (2010) Efficacy and safety of monthly ibandronate in men with low bone density. Bone 46:970–976. doi:10.1016/j.bone.2009.12.034

    Article  CAS  PubMed  Google Scholar 

  36. Fahrleitner-Pammer A, Piswanger-Soelkner JC, Pieber TR, Obermayer-Pietsch BM, Pilz S, Dimai HP, Prenner G, Tscheliessnigg KH, Hauge E, Portugaller RH, Dobnig H (2009) Ibandronate prevents bone loss and reduces vertebral fracture risk in male cardiac transplant patients: a randomized double-blind, placebo-controlled trial. J Bone Miner Res 24(7):1335–1344. doi:10.1359/jbmr.090216

    Article  CAS  PubMed  Google Scholar 

  37. Ringe JD, Faber H, Dorst A (2001) Alendronate treatment of established primary osteoporosis in men: results of a 2-year prospective study. J Clin Endocrinol Metab 86:5252–5255. doi:10.1210/jcem.86.11.7988

    Article  CAS  PubMed  Google Scholar 

  38. Orwoll ES, Miller PD, Adachi JD, Brown J, Adler RA, Kendler D, Bucci-Rechtweg C, Readie A, Mesenbrink P, Weinstein RS (2010) Efficacy and safety of a once-yearly i.v. Infusion of zoledronic acid 5 mg versus a once-weekly 70-mg oral alendronate in the treatment of male osteoporosis: a randomized, multicenter, double-blind, active-controlled study. J Bone Miner Res 25:2239–2250. doi:10.1002/jbmr.119

    Article  CAS  PubMed  Google Scholar 

  39. Keaveny TM, McClung MR, Genant HK, Zanchetta JR, Kendler D, Brown JP et al (2014) Femoral and vertebral strength improvements in postmenopausal women with osteoporosis treated with denosumab. J Bone Miner Res 29:158–165. doi:10.1002/jbmr.2024

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Amrein K, Amrein S, Drexler C, Dimai HP, Dobnig H, Pfeifer K, Fahrleitner-Pammer A (2012) Sclerostin and its association with physical activity, age, gender, body composition, and bone mineral content in healthy adults. J Clin Endocrinol Metab 97:148–154. doi:10.1210/jc.2011-2152

    Article  CAS  PubMed  Google Scholar 

  41. Kocijan R, Muschitz C, Fahrleitner-Pammer A, Amrein K, Pietschmann P, Haschka J, Dinu S, Kapiotis S, Resch H (2014) Serum sclerostin levels are decreased in adult patients with different types of osteogenesis imperfecta. J Clin Endocrinol Metab 99:E311–E319. doi:10.1210/jc.2013-2244

    Article  CAS  PubMed  Google Scholar 

  42. Szulc P, Boutroy S, Vilayphiou N, Schoppet M, Rauner M, Chapurlat R, Hamann C, Hofbauer LC (2013) Correlates of bone microarchitectural parameters and serum sclerostin levels in men: the STRAMBO study. J Bone Miner Res 28(8):1760–1770. doi:10.1002/jbmr.1888

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors cordially thank Dr. Heike von Krempelhuber at Tutzing/Germany for assistance in editing the manuscript, Sabine Klauss and Xenia Steiner at Ulm/Germany for graphic design of the figures. The authors further acknowledge the work of the staff of the central laboratory and of the Department of Diagnostic and Interventional Radiology at St. Vincent Hospital Vienna, Austria. QCT DICOM data were calculated without knowledge of the study protocol by Dr. Wolfram Timm at Kiel/Germany. FEA calculations were performed by Dr. Enrico Dall’Ara at the Institute of Lightweight Design and Structural Biomechanics, University of Technology, Vienna, Austria. TBS scores were calculated without knowledge of the study protocol by Prf. Didier Hans at Lausanne/CH.

Conflict of interest

Christian Muschitz has received speaker honoraria from Amgen, Novartis, Servier, Eli Lilly, Nycomed/Takeda, and has received educational grants/research support from the Austrian Society for Bone and Mineral Research, Roche Austria, Eli Lilly Austria, and Amgen Austria. Heinrich Resch has received speaker honoraria from Amgen, Novartis, Servier, Eli Lilly, Nycomed/Takeda, Merck (MSD), and has received educational grants/research support from Eli Lilly and Roche Austria. Peter Pietschmann has received research support and/or honoraria from Amgen GmbH, Eli Lilly GmbH, Fresenius Kabi Austria GmbH, Merck, Sharp and Dohme GmbH, Novartis Pharma, Nycomed Pharma, Roche Austria, Servier Austria, Sanofi-Austria, and Sinapharm. Karin Amrein reports scientific support from Fresenius Kabi Austria. Dieter Pahr is the owner of a consultancy company for FEA calculations and has received a fee for the QCT segmentation, but not for the FEA calculations in this study. Roland Kocijan, Janina M. Patsch, Barbara M. Misof, and Alexandra Kaider have nothing to disclose.

Human and Animal Rights and Informed Consent

This study was planned and conducted according to the Helsinki Declaration of 2000 and was approved by the Ethics Committee of the Medical University of Vienna/Austria (AUT – 25/2006) and by the Ethics Committee of the St. Vincent Hospital Vienna/Austria (EK-Nr: 2006/12). The study was also registered at EudraCT:2006-006692-20. Informed and written consent was obtained from all patients prior to any study related procedure.

Competing interest

This investigator-initiated study was supported by an independent research grant from Roche Austria. Roche Austria was not involved in the study design or had any admission to patient-related data and findings.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Muschitz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muschitz, C., Kocijan, R., Pahr, D. et al. Ibandronate Increases Sclerostin Levels and Bone Strength in Male Patients with Idiopathic Osteoporosis. Calcif Tissue Int 96, 477–489 (2015). https://doi.org/10.1007/s00223-015-0003-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-015-0003-8

Keywords

Navigation