Skip to main content
Log in

A Comparison of Osteoclast-Rich and Osteoclast-Poor Osteopetrosis in Adult Mice Sheds Light on the Role of the Osteoclast in Coupling Bone Resorption and Bone Formation

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Osteopetrosis due to lack of acid secretion by osteoclasts is characterized by abolished bone resorption, increased osteoclast numbers, but normal or even increased bone formation. In contrast, osteoclast-poor osteopetrosis appears to have less osteoblasts and reduced bone formation, indicating that osteoclasts are important for regulating osteoblast activity. To illuminate the role of the osteoclast in controlling bone remodeling, we transplanted irradiated skeletally mature 3-month old wild-type mice with hematopoietic stem cells (HSCs) to generate either an osteoclast-rich or osteoclast-poor adult osteopetrosis model. We used fetal liver HSCs from (1) oc/oc mice, (2) RANK KO mice, and (3) compared these to wt control cells. TRAP5b activity, a marker of osteoclast number and size, was increased in the oc/oc recipients, while a significant reduction was seen in the RANK KO recipients. In contrast, the bone resorption marker CTX-I was similarly decreased in both groups. Both oc/oc and Rank KO recipients developed a mild osteopetrotic phenotype. However, the osteoclast-rich oc/oc recipients showed higher trabecular bone volume (40 %), increased bone strength (66 %), and increased bone formation rate (54 %) in trabecular bone, while RANK KO recipients showed only minor trends compared to control recipients. We here show that maintaining non-resorbing osteoclasts, as opposed to reducing the osteoclasts, leads to increased bone formation, bone volume, and ultimately higher bone strength in vivo, which indicates that osteoclasts are sources of anabolic molecules for the osteoblasts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Martin TJ, Seeman E (2008) Bone remodelling: its local regulation and the emergence of bone fragility. Best Pract Res Clin Endocrinol Metab 22:701–722

    Article  PubMed  Google Scholar 

  2. Seeman E, Delmas PD (2006) Bone quality: the material and structural basis of bone strength and fragility. N Engl J Med 354:2250–2261

    Article  CAS  PubMed  Google Scholar 

  3. Balemans W, Van Wesenbeeck L, Van Hul W (2005) A clinical and molecular overview of the human osteopetroses. Calcif Tissue Int 77:263–274

    Article  CAS  PubMed  Google Scholar 

  4. Del Fattore A, Peruzzi B, Rucci N, Recchia I, Cappariello A, Longo M, Fortunati D, Ballanti P, Iacobini M, Luciani M, Devito R, Pinto R, Caniglia M, Lanino E, Messina C, Cesaro S, Letizia C, Bianchini G, Fryssira H, Grabowski P, Shaw N, Bishop N, Hughes D, Kapur RP, Datta HK, Taranta A, Fornari R, Migliaccio S, Teti A (2006) Clinical, genetic, and cellular analysis of 49 osteopetrotic patients: implications for diagnosis and treatment. J Med Genet 43:315–325

    Article  PubMed Central  PubMed  Google Scholar 

  5. Baron R, Neff L, Louvard D, Courtoy PJ (1985) Cell-mediated extracellular acidification and bone resorption: evidence for a low pH in resorbing lacunae and localization of a 100-kD lysosomal membrane protein at the osteoclast ruffled border. J Cell Biol 101:2210–2222

    Article  CAS  PubMed  Google Scholar 

  6. Frattini A, Orchard PJ, Sobacchi C, Giliani S, Abinun M, Mattsson JP, Keeling DJ, Andersson AK, Wallbrandt P, Zecca L, Notarangelo LD, Vezzoni P, Villa A (2000) Defects in TCIRG1 subunit of the vacuolar proton pump are responsible for a subset of human autosomal recessive osteopetrosis. Nat Genet 25:343–346

    Article  CAS  PubMed  Google Scholar 

  7. Kornak U, Kasper D, Bosl MR, Kaiser E, Schweizer M, Schulz A, Friedrich W, Delling G, Jentsch TJ (2001) Loss of the ClC-7 chloride channel leads to osteopetrosis in mice and man. Cell 104:205–215

    Article  CAS  PubMed  Google Scholar 

  8. Henriksen K, Gram J, Schaller S, Dahl BH, Dziegiel MH, Bollerslev J, Karsdal MA (2004) Characterization of osteoclasts from patients harboring a G215R mutation in ClC-7 causing autosomal dominant osteopetrosis type II. Am J Pathol 164:1537–1545

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Schaller S, Henriksen K, Sorensen MG, Karsdal MA (2005) The role of chloride channels in osteoclasts: ClC-7 as a target for osteoporosis treatment. Drug News Perspect 18:489–495

    Article  CAS  PubMed  Google Scholar 

  10. Bollerslev J, Marks SC Jr, Pockwinse S, Kassem M, Brixen K, Steiniche T, Mosekilde L (1993) Ultrastructural investigations of bone resorptive cells in two types of autosomal dominant osteopetrosis. Bone 14:865–869

    Article  CAS  PubMed  Google Scholar 

  11. Guerrini MM, Sobacchi C, Cassani B, Abinun M, Kilic SS, Pangrazio A, Moratto D, Mazzolari E, Clayton-Smith J, Orchard P, Coxon FP, Helfrich MH, Crockett JC, Mellis D, Vellodi A, Tezcan I, Notarangelo LD, Rogers MJ, Vezzoni P, Villa A, Frattini A (2008) Human osteoclast-poor osteopetrosis with hypogammaglobulinemia due to TNFRSF11A (RANK) mutations. Am J Hum Genet 83:64–76

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Kornak U, Schulz A, Friedrich W, Uhlhaas S, Kremens B, Voit T, Hasan C, Bode U, Jentsch TJ, Kubisch C (2000) Mutations in the a3 subunit of the vacuolar H(+)-ATPase cause infantile malignant osteopetrosis. Hum Mol Genet 9:2059–2063

    Article  CAS  PubMed  Google Scholar 

  13. Li YP, Chen W, Liang Y, Li E, Stashenko P (1999) Atp6i-deficient mice exhibit severe osteopetrosis due to loss of osteoclast-mediated extracellular acidification. Nat Genet 23:447–451

    Article  CAS  PubMed  Google Scholar 

  14. Neutzsky-Wulff AV, Sims NA, Supanchart C, Kornak U, Felsenberg D, Poulton IJ, Martin TJ, Karsdal MA, Henriksen K (2010) Severe developmental bone phenotype in ClC-7 deficient mice. Dev Biol 344:1001–1010

    Article  CAS  PubMed  Google Scholar 

  15. Henriksen K, Flores C, Thomsen JS, Bruel AM, Thudium CS, Neutzsky-Wulff AV, Langenbach GE, Sims N, Askmyr M, Martin TJ, Everts V, Karsdal MA, Richter J (2011) Dissociation of bone resorption and bone formation in adult mice with a non-functional V-ATPase in osteoclasts leads to increased bone strength. PLoS One 6:e27482

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Dougall WC, Glaccum M, Charrier K, Rohrbach K, Brasel K, De ST, Daro E, Smith J, Tometsko ME, Maliszewski CR, Armstrong A, Shen V, Bain S, Cosman D, Anderson D, Morrissey PJ, Peschon JJ, Schuh J (1999) RANK is essential for osteoclast and lymph node development. Genes Dev 13:2412–2424

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Li J, Sarosi I, Yan XQ, Morony S, Capparelli C, Tan HL, McCabe S, Elliott R, Scully S, Van G, Kaufman S, Juan SC, Sun Y, Tarpley J, Martin L, Christensen K, McCabe J, Kostenuik P, Hsu H, Fletcher F, Dunstan CR, Lacey DL, Boyle WJ (2000) RANK is the intrinsic hematopoietic cell surface receptor that controls osteoclastogenesis and regulation of bone mass and calcium metabolism. Proc Natl Acad Sci USA 97:1566–1571

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Flores C, Moscatelli I, Thudium CS, Gudmann NS, Thomsen JS, Bruel A, Karsdal MA, Henriksen K, Richter J (2013) Osteoclasts are not crucial for hematopoietic stem cell maintenance in adult mice. Haematologica 98:1848–1855

    Article  PubMed Central  PubMed  Google Scholar 

  19. Askmyr M, Holmberg J, Flores C, Ehinger M, Hjalt T, Richter J (2009) Low-dose busulphan conditioning and neonatal stem cell transplantation preserves vision and restores hematopoiesis in severe murine osteopetrosis. Exp Hematol 37:302–308

    Article  CAS  PubMed  Google Scholar 

  20. Neutzsky-Wulff AV, Karsdal MA, Henriksen K (2008) Characterization of the bone phenotype in ClC-7-deficient mice. Calcif Tissue Int 83:425–437

    Article  CAS  PubMed  Google Scholar 

  21. Karsdal MA, Henriksen K, Sorensen MG, Gram J, Schaller S, Dziegiel MH, Heegaard AM, Christophersen P, Martin TJ, Christiansen C, Bollerslev J (2005) Acidification of the osteoclastic resorption compartment provides insight into the coupling of bone formation to bone resorption. Am J Pathol 166:467–476

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Thomsen JS, Laib A, Koller B, Prohaska S, Mosekilde L, Gowin W (2005) Stereological measures of trabecular bone structure: comparison of 3D micro computed tomography with 2D histological sections in human proximal tibial bone biopsies. J Microsc 218:171–179

    Article  CAS  PubMed  Google Scholar 

  23. Parfitt AM, Drezner MK, Glorieux FH, Kanis JA, Malluche H, Meunier PJ, Ott SM, Recker RR (1987) Bone histomorphometry: standardization of nomenclature, symbols, and units. Report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res 2:595–610

    Article  CAS  PubMed  Google Scholar 

  24. Rissanen JP, Suominen MI, Peng Z, Halleen JM (2008) Secreted tartrate-resistant acid phosphatase 5b is a marker of osteoclast number in human osteoclast cultures and the rat ovariectomy model. Calcif Tissue Int 82:108–115

    Article  CAS  PubMed  Google Scholar 

  25. Henriksen K, Tanko LB, Qvist P, Delmas PD, Christiansen C, Karsdal MA (2007) Assessment of osteoclast number and function: application in the development of new and improved treatment modalities for bone diseases. Osteoporos Int 18:681–685

    Article  CAS  PubMed  Google Scholar 

  26. Alatalo SL, Ivaska KK, Waguespack SG, Econs MJ, Vaananen HK, Halleen JM (2004) Osteoclast-derived serum tartrate-resistant acid phosphatase 5b in Albers-Schonberg disease (type II autosomal dominant osteopetrosis). Clin Chem 50:883–890

    Article  CAS  PubMed  Google Scholar 

  27. Moscatelli I, Thudium CS, Flores C, Schulz A, Askmyr M, Gudmann NS, Andersen NM, Porras O, Karsdal MA, Villa A, Fasth A, Henriksen K, Richter J (2013) Lentiviral gene transfer of TCIRG1 into peripheral blood CD34(+) cells restores osteoclast function in infantile malignant osteopetrosis. Bone 57:1–9

    Article  CAS  PubMed  Google Scholar 

  28. Sobacchi C, Frattini A, Guerrini MM, Abinun M, Pangrazio A, Susani L, Bredius R, Mancini G, Cant A, Bishop N, Grabowski P, Del Fattore A, Messina C, Errigo G, Coxon FP, Scott DI, Teti A, Rogers MJ, Vezzoni P, Villa A, Helfrich MH (2007) Osteoclast-poor human osteopetrosis due to mutations in the gene encoding RANKL. Nat Genet 39:960–962

    Article  CAS  PubMed  Google Scholar 

  29. Henriksen K, Andreassen KV, Thudium CS, Gudmann KN, Moscatelli I, Cruger-Hansen CE, Schulz AS, Dziegiel MH, Richter J, Karsdal MA, Neutzsky-Wulff AV (2012) A specific subtype of osteoclasts secretes factors inducing nodule formation by osteoblasts. Bone 51:353–361

    Article  CAS  PubMed  Google Scholar 

  30. Kim BJ, Lee YS, Lee SY, Park SY, Dieplinger H, Ryu SH, Yea K, Choi S, Lee SH, Koh JM, Kim GS (2012) Afamin secreted from nonresorbing osteoclasts acts as a chemokine for preosteoblasts via the Akt-signaling pathway. Bone 51:431–440

    Article  CAS  PubMed  Google Scholar 

  31. Karsdal MA, Martin TJ, Bollerslev J, Christiansen C, Henriksen K (2007) Are nonresorbing osteoclasts sources of bone anabolic activity? J Bone Miner Res 22:487–494

    Article  CAS  PubMed  Google Scholar 

  32. Mizoguchi T, Muto A, Udagawa N, Arai A, Yamashita T, Hosoya A, Ninomiya T, Nakamura H, Yamamoto Y, Kinugawa S, Nakamura M, Nakamichi Y, Kobayashi Y, Nagasawa S, Oda K, Tanaka H, Tagaya M, Penninger JM, Ito M, Takahashi N (2009) Identification of cell cycle-arrested quiescent osteoclast precursors in vivo. J. Cell Biol 184:541–554

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Takahashi N, Muto A, Arai A, Mizoguchi T (2010) Identification of cell cycle-arrested quiescent osteoclast precursors in vivo. Adv Exp Med Biol 658:21–30

    Article  CAS  PubMed  Google Scholar 

  34. Kong YY, Yoshida H, Sarosi I, Tan HL, Timms E, Capparelli C, Morony S, Oliveira-dos-Santos AJ, Van G, Itie A, Khoo W, Wakeham A, Dunstan CR, Lacey DL, Mak TW, Boyle WJ, Penninger JM (1999) OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature 397:315–323

    Article  CAS  PubMed  Google Scholar 

  35. Koh AJ, Demiralp B, Neiva KG, Hooten J, Nohutcu RM, Shim H, Datta NS, Taichman RS, McCauley LK (2005) Cells of the osteoclast lineage as mediators of the anabolic actions of parathyroid hormone in bone. Endocrinology 146:4584–4596

    Article  CAS  PubMed  Google Scholar 

  36. Tolar J, Teitelbaum SL, Orchard PJ (2004) Osteopetrosis. N Engl J Med 351:2839–2849

    Article  PubMed  Google Scholar 

  37. Waguespack SG, Hui SL, Dimeglio LA, Econs MJ (2007) Autosomal dominant osteopetrosis: clinical severity and natural history of 94 subjects with a chloride channel 7 gene mutation. J Clin Endocrinol Metab 92:771–778

    Article  CAS  PubMed  Google Scholar 

  38. Henriksen K, Neutzsky-Wulff AV, Bonewald LF, Karsdal MA (2009) Local communication on and within bone controls bone remodeling. Bone 44:1026–1033

    Article  PubMed  Google Scholar 

  39. Karsdal MA, Neutzsky-Wulff AV, Dziegiel MH, Christiansen C, Henriksen K (2008) Osteoclasts secrete non-bone derived signals that induce bone formation. Biochem Biophys Res Commun 366:483–488

    Article  CAS  PubMed  Google Scholar 

  40. Dai XM, Zong XH, Akhter MP, Stanley ER (2004) Osteoclast deficiency results in disorganized matrix, reduced mineralization, and abnormal osteoblast behavior in developing bone. J Bone Miner Res 19:1441–1451

    Article  CAS  PubMed  Google Scholar 

  41. Pederson L, Ruan M, Westendorf JJ, Khosla S, Oursler MJ (2008) Regulation of bone formation by osteoclasts involves Wnt/BMP signaling and the chemokine sphingosine-1-phosphate. Proc Natl Acad Sci USA 105:20764–20769

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Henriksen K, Karsdal MA, Martin TJ (2014) Osteoclast-derived coupling factors in bone remodeling. Calcif Tissue Int 94:88–97

    Article  CAS  PubMed  Google Scholar 

  43. Takeshita S, Fumoto T, Matsuoka K, Park KA, Aburatani H, Kato S, Ito M, Ikeda K (2013) Osteoclast-secreted CTHRC1 in the coupling of bone resorption to formation. J Clin Invest 123:3914–3924

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Coudert AE, Del FA, Baulard C, Olaso R, Schiltz C, Collet C, Teti A, de Vernejoul MC (2014) Differentially expressed genes in autosomal dominant osteopetrosis type II osteoclasts reveal known and novel pathways for osteoclast biology. Lab Invest 94:275–285

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

CST received funding from Nordforsk. CF was supported by a PhD fellowship from European Calcified Tissue Society. JR is supported by grants from The Swedish Childhood Cancer Foundation, a Clinical Research Award from Lund University Hospital, Magnus Bergvalĺs Foundation, the Georg Danielsson Foundation, and The Foundations of Lund University Hospital. KH is supported by the Danish Research Foundation. We would like to thank Lena Persson-Feld and Simone Berggren at the BMC animal facility as well as Christina Hansen and Mia Jørgensen at Nordic Bioscience for expert animal care.

Animal Studies

All institutional and national guidelines for the care and use of laboratory animals were followed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian S. Thudium.

Additional information

MK owns stock in Nordic Bioscience A/S. None of the other authors declare any conflicts of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online resource 1

Schematic of the experimental design. (TIFF 102 kb)

Online resource 2

Engraftment analysis. Bone marrow cells were isolated from the femur and engraftment percentage was determined by analyzing the percentage of CD45.1/CD45.2 expressing cells in oc/oc control recipients (n = 10), oc/oc recipients (n = 7), RANK KO control recipients (n = 11), and RANK KO recipients (n = 12). (A–D) representative FACS plots of engraftment analysis. (B) Percent engraftment shown as individual engraftment and mean value. (TIFF 544 kb)

Online resource 3

Osteoclast differentiation of isolated splenocytes. TRAP and pit staining of osteoclast cultures after 10 days of differentiation in the presence of M-CSF and RANKL. Images were captured at 200× magnification (Previously published in a different format [18]). (TIFF 1676 kb)

Online resource 4

Serum markers of bone turnover. Serum samples were collected throughout the experiment and (A) CTX-I, (B) TRAP5b, and (C) ALP measured (previously published in different format [18]. Data are plotted as accumulation of all time points and shown as percentage of control for comparative purposes. (TIFF 100 kb)

Online resource 5

Micro-CT analysis of the femur (A) Bone volume/tissue volume (BV/TV), (B) Cortical thickness (Ct. th.*), (C) Marrow area per tissue area (MA/TA). All data are shown as mean percentage of control with SEM, for comparative purposes and were analyzed using an unpaired two-sided Student’s t test. (TIFF 97 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thudium, C.S., Moscatelli, I., Flores, C. et al. A Comparison of Osteoclast-Rich and Osteoclast-Poor Osteopetrosis in Adult Mice Sheds Light on the Role of the Osteoclast in Coupling Bone Resorption and Bone Formation. Calcif Tissue Int 95, 83–93 (2014). https://doi.org/10.1007/s00223-014-9865-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-014-9865-4

Keywords

Navigation