Skip to main content
Log in

Interactions Between B Lymphocytes and the Osteoblast Lineage in Bone Marrow

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

The regulatory effects of the immune system on the skeleton during homeostasis and activation have been appreciated for years. In the past decade it has become evident that bone tissue can also regulate immune cell development. In the bone marrow, the differentiation of hematopoietic progenitors requires specific microenvironments, called “niches,” provided by various subsets of stromal cells, many of which are of mesenchymal origin. Among these stromal cell populations, cells of the osteoblast lineage serve a supportive function in the maintenance of normal hematopoiesis, and B lymphopoiesis in particular. Within the osteoblast lineage, distinct differentiation stages exert differential regulatory effects on hematopoietic development. In this review we will highlight the critical role of osteoblast progenitors in the perivascular B lymphocyte niche.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. LeBien TW, Tedder TF (2008) B lymphocytes: how they develop and function. Blood 112(5):1570–1580

    Article  PubMed  CAS  Google Scholar 

  2. Tokoyoda K et al (2004) Cellular niches controlling B lymphocyte behavior within bone marrow during development. Immunity 20(6):707–718

    Article  PubMed  CAS  Google Scholar 

  3. Nagasawa T (2006) Microenvironmental niches in the bone marrow required for B-cell development. Nat Rev Immunol 6(2):107–116

    Article  PubMed  CAS  Google Scholar 

  4. Otero DC, Rickert RC (2003) CD19 function in early and late B cell development. II. CD19 facilitates the pro-B/pre-B transition. J Immunol 171(11):5921–5930

    PubMed  CAS  Google Scholar 

  5. Hardy RR et al (1991) Resolution and characterization of pro-B and pre-pro-B cell stages in normal mouse bone marrow. J Exp Med 173(5):1213–1225

    Article  PubMed  CAS  Google Scholar 

  6. Osmond DG, Rolink A, Melchers F (1998) Murine B lymphopoiesis: towards a unified model. Immunol Today 19(2):65–68

    Article  PubMed  CAS  Google Scholar 

  7. Li YS et al (1996) Identification of the earliest B lineage stage in mouse bone marrow. Immunity 5(6):527–535

    Article  PubMed  CAS  Google Scholar 

  8. Ogawa M, ten Boekel E, Melchers F (2000) Identification of CD19B220+c-Kit+Flt3/Flk-2+ cells as early B lymphoid precursors before pre-B-I cells in juvenile mouse bone marrow. Int Immunol 12(3):313–324

    Article  PubMed  CAS  Google Scholar 

  9. Zou YR et al (1998) Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature 393(6685):595–599

    Article  PubMed  CAS  Google Scholar 

  10. Nagasawa T, Kikutani H, Kishimoto T (1994) Molecular cloning and structure of a pre-B-cell growth-stimulating factor. Proc Natl Acad Sci USA 91(6):2305–2309

    Article  PubMed  CAS  Google Scholar 

  11. Peled A et al (1999) Dependence of human stem cell engraftment and repopulation of NOD/SCID mice on CXCR4. Science 283(5403):845–848

    Article  PubMed  CAS  Google Scholar 

  12. Tachibana K et al (1998) The chemokine receptor CXCR4 is essential for vascularization of the gastrointestinal tract. Nature 393(6685):591–594

    Article  PubMed  CAS  Google Scholar 

  13. Nagasawa T et al (1996) Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1. Nature 382(6592):635–638

    Article  PubMed  CAS  Google Scholar 

  14. Lee G et al (1988) Recombinant interleukin-7 supports the growth of normal B lymphocyte precursors. Curr Top Microbiol Immunol 141:16–18

    Article  PubMed  CAS  Google Scholar 

  15. Miller JP et al (2002) The earliest step in B lineage differentiation from common lymphoid progenitors is critically dependent upon interleukin 7. J Exp Med 196(5):705–711

    Article  PubMed  CAS  Google Scholar 

  16. von Freeden-Jeffry U et al (1995) Lymphopenia in interleukin (IL)-7 gene-deleted mice identifies IL-7 as a nonredundant cytokine. J Exp Med 181(4):1519–1526

    Article  Google Scholar 

  17. Peschon JJ et al (1994) Early lymphocyte expansion is severely impaired in interleukin 7 receptor-deficient mice. J Exp Med 180(5):1955–1960

    Article  PubMed  CAS  Google Scholar 

  18. Sugiyama T et al (2006) Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity 25(6):977–988

    Article  PubMed  CAS  Google Scholar 

  19. Mourcin F et al (2011) Galectin-1-expressing stromal cells constitute a specific niche for pre-BII cell development in mouse bone marrow. Blood 117(24):6552–6561

    Article  PubMed  CAS  Google Scholar 

  20. Gauthier L et al (2002) Galectin-1 is a stromal cell ligand of the pre-B cell receptor (BCR) implicated in synapse formation between pre-B and stromal cells and in pre-BCR triggering. Proc Natl Acad Sci USA 99(20):13014–13019

    Article  PubMed  CAS  Google Scholar 

  21. Espeli M et al (2009) Impaired B-cell development at the pre-BII-cell stage in galectin-1-deficient mice due to inefficient pre-BII/stromal cell interactions. Blood 113(23):5878–5886

    Article  PubMed  CAS  Google Scholar 

  22. Sapoznikov A et al (2008) Perivascular clusters of dendritic cells provide critical survival signals to B cells in bone marrow niches. Nat Immunol 9(4):388–395

    Article  PubMed  CAS  Google Scholar 

  23. Link D, Calvi L. (submitted). Cellular complexity of the bone marrow hematopoietic stem cell niche. Calcif Tissue Int

  24. Taichman RS, Emerson SG (1994) Human osteoblasts support hematopoiesis through the production of granulocyte colony-stimulating factor. J Exp Med 179(5):1677–1682

    Article  PubMed  CAS  Google Scholar 

  25. Avecilla ST et al (2004) Chemokine-mediated interaction of hematopoietic progenitors with the bone marrow vascular niche is required for thrombopoiesis. Nat Med 10(1):64–71

    Article  PubMed  CAS  Google Scholar 

  26. Naveiras O et al (2009) Bone-marrow adipocytes as negative regulators of the haematopoietic microenvironment. Nature 460(7252):259–263

    Article  PubMed  CAS  Google Scholar 

  27. Omatsu Y et al (2010) The essential functions of adipo-osteogenic progenitors as the hematopoietic stem and progenitor cell niche. Immunity 33(3):387–399

    Article  PubMed  CAS  Google Scholar 

  28. Kiel MJ et al (2005) SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121(7):1109–1121

    Article  PubMed  CAS  Google Scholar 

  29. Ding L et al (2012) Endothelial and perivascular cells maintain haematopoietic stem cells. Nature 481(7382):457–462

    Article  PubMed  CAS  Google Scholar 

  30. Katayama Y et al (2006) Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow. Cell 124(2):407–421

    Article  PubMed  CAS  Google Scholar 

  31. Mendez-Ferrer S et al (2008) Haematopoietic stem cell release is regulated by circadian oscillations. Nature 452(7186):442–447

    Article  PubMed  CAS  Google Scholar 

  32. Yamazaki S et al (2011) Nonmyelinating Schwann cells maintain hematopoietic stem cell hibernation in the bone marrow niche. Cell 147(5):1146–1158

    Article  PubMed  CAS  Google Scholar 

  33. Winkler IG et al (2010) Bone marrow macrophages maintain hematopoietic stem cell (HSC) niches and their depletion mobilizes HSCs. Blood 116(23):4815–4828

    Article  PubMed  CAS  Google Scholar 

  34. Christopher MJ et al (2011) Expression of the G-CSF receptor in monocytic cells is sufficient to mediate hematopoietic progenitor mobilization by G-CSF in mice. J Exp Med 208(2):251–260

    Article  PubMed  CAS  Google Scholar 

  35. Chow A et al (2011) Bone marrow CD169+ macrophages promote the retention of hematopoietic stem and progenitor cells in the mesenchymal stem cell niche. J Exp Med 208(2):261–271

    Article  PubMed  CAS  Google Scholar 

  36. Porter RL, Calvi LM (2008) Communications between bone cells and hematopoietic stem cells. Arch Biochem Biophys 473(2):193–200

    Article  PubMed  CAS  Google Scholar 

  37. Wu JY, Scadden DT, Kronenberg HM (2009) Role of the osteoblast lineage in the bone marrow hematopoietic niches. J Bone Miner Res 24(5):759–764

    Article  PubMed  Google Scholar 

  38. Komori T et al (1997) Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell 89(5):755–764

    Article  PubMed  CAS  Google Scholar 

  39. Otto F et al (1997) Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell 89(5):765–771

    Article  PubMed  CAS  Google Scholar 

  40. Nakashima K et al (2002) The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell 108(1):17–29

    Article  PubMed  CAS  Google Scholar 

  41. Zhou X et al (2010) Multiple functions of Osterix are required for bone growth and homeostasis in postnatal mice. Proc Natl Acad Sci USA 107(29):12919–12924

    Article  PubMed  CAS  Google Scholar 

  42. Deguchi K et al (1999) Excessive extramedullary hematopoiesis in Cbfa1-deficient mice with a congenital lack of bone marrow. Biochem Biophys Res Commun 255(2):352–359

    Article  PubMed  CAS  Google Scholar 

  43. Visnjic D et al (2004) Hematopoiesis is severely altered in mice with an induced osteoblast deficiency. Blood 103(9):3258–3264

    Article  PubMed  CAS  Google Scholar 

  44. Zhu J et al (2007) Osteoblasts support B-lymphocyte commitment and differentiation from hematopoietic stem cells. Blood 109(9):3706–3712

    Article  PubMed  CAS  Google Scholar 

  45. Ducy P et al (1997) Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell 89(5):747–754

    Article  PubMed  CAS  Google Scholar 

  46. Aubin JE (2001) Regulation of osteoblast formation and function. Rev Endocr Metab Disord 2(1):81–94

    Article  PubMed  CAS  Google Scholar 

  47. Ducy P et al (1996) Increased bone formation in osteocalcin-deficient mice. Nature 382(6590):448–452

    Article  PubMed  CAS  Google Scholar 

  48. Cheng YH et al (2011) Impact of maturational status on the ability of osteoblasts to enhance the hematopoietic function of stem and progenitor cells. J Bone Miner Res 26(5):1111–1121

    Article  PubMed  CAS  Google Scholar 

  49. Chitteti BR et al (2013) Hierarchical organization of osteoblasts reveals the significant role of CD166 in hematopoietic stem cell maintenance and function. Bone 54(1):58–67

    Article  PubMed  CAS  Google Scholar 

  50. Chan CK et al (2009) Endochondral ossification is required for haematopoietic stem-cell niche formation. Nature 457(7228):490–494

    Article  PubMed  CAS  Google Scholar 

  51. Manolagas SC (2000) Birth and death of bone cells: basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis. Endocr Rev 21(2):115–137

    Article  PubMed  CAS  Google Scholar 

  52. Crisan M et al (2008) A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 3(3):301–313

    Article  PubMed  CAS  Google Scholar 

  53. Armulik A, Genove G, Betsholtz C (2011) Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev Cell 21(2):193–215

    Article  PubMed  CAS  Google Scholar 

  54. Mendez-Ferrer S et al (2010) Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 466(7308):829–834

    Article  PubMed  CAS  Google Scholar 

  55. Morikawa S et al (2009) Prospective identification, isolation, and systemic transplantation of multipotent mesenchymal stem cells in murine bone marrow. J Exp Med 206(11):2483–2496

    Article  PubMed  CAS  Google Scholar 

  56. Ding L, Morrison SJ (2013) Haematopoietic stem cells and early lymphoid progenitors occupy distinct bone marrow niches. Nature 495(7440):231–235

    Article  PubMed  CAS  Google Scholar 

  57. Greenbaum A et al (2013) CXCL12 in early mesenchymal progenitors is required for haematopoietic stem-cell maintenance. Nature 495(7440):227–230

    Article  PubMed  CAS  Google Scholar 

  58. Maes C et al (2010) Osteoblast precursors, but not mature osteoblasts, move into developing and fractured bones along with invading blood vessels. Dev Cell 19(2):329–344

    Article  PubMed  CAS  Google Scholar 

  59. Sacchetti B et al (2007) Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell 131(2):324–336

    Article  PubMed  CAS  Google Scholar 

  60. Calvi LM et al (2003) Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 425(6960):841–846

    Article  PubMed  CAS  Google Scholar 

  61. Jung Y et al (2006) Regulation of SDF-1 (CXCL12) production by osteoblasts; a possible mechanism for stem cell homing. Bone 38(4):497–508

    Article  PubMed  CAS  Google Scholar 

  62. Song L et al (2012) Loss of Wnt/beta-catenin signaling causes cell fate shift of preosteoblasts from osteoblasts to adipocytes. J Bone Miner Res 27(11):2344–2358

    Article  PubMed  CAS  Google Scholar 

  63. Corselli M et al (2013) Perivascular support of human hematopoietic stem/progenitor cells. Blood 121(15):2891–2901

    Article  PubMed  CAS  Google Scholar 

  64. Aguila HL et al (2012) Osteoblast-specific overexpression of human interleukin-7 rescues the bone mass phenotype of interleukin-7-deficient female mice. J Bone Miner Res 27(5):1030–1042

    Article  PubMed  CAS  Google Scholar 

  65. Juppner H et al (1991) A G protein-linked receptor for parathyroid hormone and parathyroid hormone-related peptide. Science 254(5034):1024–1026

    Article  PubMed  CAS  Google Scholar 

  66. Wu JY et al (2008) Osteoblastic regulation of B lymphopoiesis is mediated by Gsα-dependent signaling pathways. Proc Natl Acad Sci USA 105(44):16976–16981

    Article  PubMed  CAS  Google Scholar 

  67. Wu JY et al (2011) Gsalpha enhances commitment of mesenchymal progenitors to the osteoblast lineage but restrains osteoblast differentiation in mice. J Clin Invest 121(9):3492–3504

    Article  PubMed  CAS  Google Scholar 

  68. Fulzele K et al (2013) Myelopoiesis is regulated by osteocytes through Gsα-dependent signaling. Blood 121(6):930–939

    Article  PubMed  CAS  Google Scholar 

  69. Link A et al (2007) Fibroblastic reticular cells in lymph nodes regulate the homeostasis of naive T cells. Nat Immunol 8(11):1255–1265

    Article  PubMed  CAS  Google Scholar 

  70. Nagasawa T, Omatsu Y, Sugiyama T (2011) Control of hematopoietic stem cells by the bone marrow stromal niche: the role of reticular cells. Trends Immunol 32(7):315–320

    Article  PubMed  CAS  Google Scholar 

  71. Arroyo AG et al (1996) Differential requirements for alpha4 integrins during fetal and adult hematopoiesis. Cell 85(7):997–1008

    Article  PubMed  CAS  Google Scholar 

  72. Franzoso G et al (1997) Requirement for NF-kappaB in osteoclast and B-cell development. Genes Dev 11(24):3482–3496

    Article  PubMed  CAS  Google Scholar 

  73. Kong YY et al (1999) OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature 397(6717):315–323

    Article  PubMed  CAS  Google Scholar 

  74. Tagaya H et al (2013) Intramedullary and extramedullary B lymphopoiesis in osteopetrotic mice. Blood 95(11):3363–3370

    Google Scholar 

  75. Blin-Wakkach C et al (2004) Hematological defects in the oc/oc mouse, a model of infantile malignant osteopetrosis. Leukemia 18(9):1505–1511

    Article  PubMed  CAS  Google Scholar 

  76. Scimeca JC et al (2000) The gene encoding the mouse homologue of the human osteoclast-specific 116-kDa V-ATPase subunit bears a deletion in osteosclerotic (oc/oc) mutants. Bone 26(3):207–213

    Article  PubMed  CAS  Google Scholar 

  77. Blin-Wakkach C et al (2004) Characterization of a novel bipotent hematopoietic progenitor population in normal and osteopetrotic mice. J Bone Miner Res 19(7):1137–1143

    Article  PubMed  Google Scholar 

  78. Blin-Wakkach C et al (2006) Interleukin-7 partially rescues B-lymphopoiesis in osteopetrotic oc/oc mice through the engagement of B220+ CD11b+ progenitors. Exp Hematol 34(7):851–859

    Article  PubMed  CAS  Google Scholar 

  79. Mansour A et al (2011) Osteoclast activity modulates B-cell development in the bone marrow. Cell Res 21(7):1102–1115

    Article  PubMed  CAS  Google Scholar 

  80. Tang Y et al (2009) TGF-beta1-induced migration of bone mesenchymal stem cells couples bone resorption with formation. Nat Med 15(7):757–765

    Article  PubMed  CAS  Google Scholar 

  81. Cain CJ et al (2012) Absence of sclerostin adversely affects B-cell survival. J Bone Miner Res 27(7):1451–1461

    Article  PubMed  CAS  Google Scholar 

  82. Semenov M, Tamai K, He X (2005) SOST is a ligand for LRP5/LRP6 and a Wnt signaling inhibitor. J Biol Chem 280(29):26770–26775

    Article  PubMed  CAS  Google Scholar 

  83. Choi HY et al (2009) Lrp4, a novel receptor for Dickkopf 1 and sclerostin, is expressed by osteoblasts and regulates bone growth and turnover in vivo. PLoS One 4(11):e7930

    Article  PubMed  Google Scholar 

  84. Li X et al (2008) Targeted deletion of the sclerostin gene in mice results in increased bone formation and bone strength. J Bone Miner Res 23(6):860–869

    Article  PubMed  Google Scholar 

  85. Tamura M, Sato MM, Nashimoto M (2011) Regulation of CXCL12 expression by canonical Wnt signaling in bone marrow stromal cells. Int J Biochem Cell Biol 43(5):760–767

    Article  PubMed  CAS  Google Scholar 

  86. Chang MK et al (2008) Osteal tissue macrophages are intercalated throughout human and mouse bone lining tissues and regulate osteoblast function in vitro and in vivo. J Immunol 181(2):1232–1244

    PubMed  CAS  Google Scholar 

  87. Winkler IG et al (2013) B-lymphopoiesis is stopped by mobilizing doses of G-CSF and is rescued by overexpression of the anti-apoptotic protein Bcl2. Haematologica 98(3):325–333

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Harvard Stem Cell Institute (Cambridge, MA) and NIH Grant DP2OD008466 to J. Y.W

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joy Y. Wu.

Additional information

The authors have stated that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Panaroni, C., Wu, J.Y. Interactions Between B Lymphocytes and the Osteoblast Lineage in Bone Marrow. Calcif Tissue Int 93, 261–268 (2013). https://doi.org/10.1007/s00223-013-9753-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-013-9753-3

Keywords

Navigation