Skip to main content

Advertisement

Log in

Endogenous Estradiol and The Risk of Incident Fracture in Postmenopausal Women: The OPUS Study

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Some, but not all, studies have found that low endogenous estradiol levels in postmenopausal women are predictive of fractures. The aim of this study was to examine the roles of endogenous estradiol (E2), sex hormone binding globulin (SHBG), and dehydroepiandrosterone sulfate (DHEAS) in the prediction of incident vertebral and nonvertebral fractures. The study subjects were 797 postmenopausal women from the population-based OPUS (Osteoporosis and Ultrasound Study) study. Spine radiographs and dual-energy X-ray absorptiometry scans were obtained for all subjects at baseline and 6-year follow-up. Nonfasting blood samples were taken at baseline for E2, SHBG, DHEAS, and bone turnover markers. Incident nonvertebral fractures were self-reported and verified; vertebral fractures were diagnosed at a single center from spinal radiographs. Medical and lifestyle data were obtained by questionnaire at each visit. Thirty-nine subjects had an incident vertebral fracture and 119 a nonvertebral fracture. Estradiol in the lowest quartile predicted vertebral fracture independent of confounders including age, body mass index, bone mineral density, bone turnover, fracture history, and use of antiresorptive therapy, with an OR of 2.97 (95 % confidence interval [CI] 1.52–5.82) by logistic regression. A calculated free estradiol index was not a stronger predictor than total E2. Higher SHBG predicted vertebral fracture independently of age and body mass index, but not independently of E2, bone mineral density, or prevalent fracture. Low DHEAS did not predict vertebral fracture. Nonvertebral fractures were not predicted by any of E2, SHBG, or DHEAS, either in univariate or multivariate analyses. These findings suggest that there may be mechanistic differences in the protective effect of E2 at vertebral compared with nonvertebral sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Seeman E (2004) Estrogen, androgen, and the pathogenesis of bone fragility in women and men. Curr Osteoporos Rep 2:90–96

    Article  PubMed  Google Scholar 

  2. Bjornerem A, Emaus N, Berntsen GK, Joakimsen RM, Fonnebo V, Wilsgaard T, Oian P, Seeman E, Straume B (2007) Circulating sex steroids, sex hormone-binding globulin, and longitudinal changes in forearm bone mineral density in postmenopausal women and men: the Tromso study. Calcif Tissue Int 81:65–72

    Article  PubMed  CAS  Google Scholar 

  3. Khosla S, Melton LJ III, Atkinson EJ, O’Fallon WM, Klee GG, Riggs BL (1998) Relationship of serum sex steroid levels and bone turnover markers with bone mineral density in men and women: a key role for bioavailable estrogen. J Clin Endocrinol Metab 83:2266–2274

    Article  PubMed  CAS  Google Scholar 

  4. Bjornerem A, Ahmed LA, Joakimsen RM, Berntsen GK, Fonnebo V, Jorgensen L, Oian P, Seeman E, Straume B (2007) A prospective study of sex steroids, sex hormone-binding globulin, and non-vertebral fractures in women and men: the Tromso Study. Eur J Endocrinol 157:119–125

    Article  PubMed  Google Scholar 

  5. Chapurlat RD, Garnero P, Breart G, Meunier PJ, Delmas PD (2000) Serum estradiol and sex hormone-binding globulin and the risk of hip fracture in elderly women: the EPIDOS study. J Bone Miner Res 15:1835–1841

    Article  PubMed  CAS  Google Scholar 

  6. Cummings SR, Browner WS, Bauer D, Stone K, Ensrud K, Jamal S, Ettinger B (1998) Endogenous hormones and the risk of hip and vertebral fractures among older women. Study of osteoporotic fractures research group. N Engl J Med 339:733–738

    Article  PubMed  CAS  Google Scholar 

  7. Devine A, Dick IM, Dhaliwal SS, Naheed R, Beilby J, Prince RL (2005) Prediction of incident osteoporotic fractures in elderly women using the free estradiol index. Osteoporos Int 16:216–221

    Article  PubMed  CAS  Google Scholar 

  8. Garnero P, Sornay-Rendu E, Claustrat B, Delmas PD (2000) Biochemical markers of bone turnover, endogenous hormones and the risk of fractures in postmenopausal women: the OFELY study. J Bone Miner Res 15:1526–1536

    Article  PubMed  CAS  Google Scholar 

  9. Goderie-Plomp HW, van der Klift M, de Ronde W, Hofman A, de Jong FH, Pols HA (2004) Endogenous sex hormones, sex hormone-binding globulin, and the risk of incident vertebral fractures in elderly men and women: the Rotterdam Study. J Clin Endocrinol Metab 89:3261–3269

    Article  PubMed  CAS  Google Scholar 

  10. Kuchuk NO, van Schoor NM, Pluijm SM, Smit JH, de Ronde W, Lips P (2007) The association of sex hormone levels with quantitative ultrasound, bone mineral density, bone turnover and osteoporotic fractures in older men and women. Clin Endocrinol 67:295–303

    Article  CAS  Google Scholar 

  11. Lee JS, LaCroix AZ, Wu L, Cauley JA, Jackson RD, Kooperberg C, Leboff MS, Robbins J, Lewis CE, Bauer DC, Cummings SR (2008) Associations of serum sex hormone-binding globulin and sex hormone concentrations with hip fracture risk in postmenopausal women. J Clin Endocrinol Metab 93:1796–1803

    Article  PubMed  CAS  Google Scholar 

  12. Prince RL, Dick IM, Beilby J, Dhaliwal SS, Devine A (2007) A cohort study of the effect of endogenous estrogen on spine fracture risk and bone structure in elderly women and an assessment of its diagnostic usefulness. Bone 41:33–38

    Article  PubMed  CAS  Google Scholar 

  13. Roddam AW, Appleby P, Neale R, Dowsett M, Folkerd E, Tipper S, Allen NE, Key TJ (2009) Association between endogenous plasma hormone concentrations and fracture risk in men and women: the EPIC-Oxford prospective cohort study. J Bone Miner Metab 27(4):485–493

    Article  PubMed  CAS  Google Scholar 

  14. Sipila S, Heikkinen E, Cheng S, Suominen H, Saari P, Kovanen V, Alen M, Rantanen T (2006) Endogenous hormones, muscle strength, and risk of fall-related fractures in older women. J Gerontol A Biol Sci Med Sci 61:92–96

    Article  PubMed  Google Scholar 

  15. Gluer CC, Eastell R, Reid DM, Felsenberg D, Roux C, Barkmann R, Timm W, Blenk T, Armbrecht G, Stewart A, Clowes J, Thomasius FE, Kolta S (2004) Association of five quantitative ultrasound devices and bone densitometry with osteoporotic vertebral fractures in a population-based sample: the OPUS Study. J Bone Miner Res 19:782–793

    Article  PubMed  Google Scholar 

  16. O’Neill TW, Cooper C, Cannata JB, Diaz Lopez JB, Hoszowski K, Johnell O, Lorenc RS, Nilsson B, Raspe H, Stewart O (1994) Reproducibility of a questionnaire on risk factors for osteoporosis in a multicentre prevalence survey: the European vertebral osteoporosis study. Int J Epidemiol 23:559–565

    Article  PubMed  Google Scholar 

  17. Sanders KM (1998) The exclusion of high trauma fractures may underestimate the prevalence of bone fragility fractures in the community: the Geelong osteoporosis study. J Bone Miner Res 13(8):1337–1342

    Article  PubMed  CAS  Google Scholar 

  18. Mackey DC, Lui LY, Cawthon PM, Bauer DC, Nevitt MC, Cauley JA, Hillier TA, Lewis CE, Barrett-Connor E, Cummings SR (2007) High-trauma fractures and low bone mineral density in older women and men. JAMA 298:2381–2388

    Article  PubMed  CAS  Google Scholar 

  19. Seeley DG, Browner WS, Nevitt MC, Genant HK, Scott JC, Cummings SR (1991) Which fractures are associated with low appendicular bone mass in elderly women? The study of osteoporotic fractures research group. Ann Intern Med 115:837–842

    PubMed  CAS  Google Scholar 

  20. Cooper C, Atkinson EJ, O’Fallon WM, Melton LJ III (1992) Incidence of clinically diagnosed vertebral fractures: a population-based study in Rochester, Minnesota, 1985–1989. J Bone Miner Res 7:221–227

    Article  PubMed  CAS  Google Scholar 

  21. Graafmans WC, Ooms ME, Bezemer PD, Bouter LM, Lips P (1996) Different risk profiles for hip fractures and distal forearm fractures: a prospective study. Osteoporos Int 6:427–431

    Article  PubMed  CAS  Google Scholar 

  22. Kelsey JL, Browner WS, Seeley DG, Nevitt MC, Cummings SR (1992) Risk factors for fractures of the distal forearm and proximal humerus. The study of osteoporotic fractures research group. Am J Epidemiol 135:477–489

    PubMed  CAS  Google Scholar 

  23. Seeley DG, Kelsey J, Jergas M, Nevitt MC (1996) Predictors of ankle and foot fractures in older women. The study of osteoporotic fractures research group. J Bone Miner Res 11:1347–1355

    Article  PubMed  CAS  Google Scholar 

  24. Youm T, Koval KJ, Kummer FJ, Zuckerman JD (1999) Do all hip fractures result from a fall? Am J Orthop 28:190–194

    PubMed  CAS  Google Scholar 

  25. Finigan J, Greenfield DM, Blumsohn A, Hannon RA, Peel NF, Jiang G, Eastell R (2008) Risk factors for vertebral and nonvertebral fracture over 10 years: a population-based study in women. J Bone Miner Res 23:75–85

    Article  PubMed  Google Scholar 

  26. Fortunati N, Catalano MG, Boccuzzi G, Frairia R (2010) Sex hormone-binding globulin (SHBG), estradiol and breast cancer. Mol Cell Endocrinol 316:86–92

    Article  PubMed  CAS  Google Scholar 

  27. Hammes A, Andreassen TK, Spoelgen R, Raila J, Hubner N, Schulz H, Metzger J, Schweigert FJ, Luppa PB, Nykjaer A, Willnow TE (2005) Role of endocytosis in cellular uptake of sex steroids. Cell 122:751–762

    Article  PubMed  CAS  Google Scholar 

  28. Sodergard R, Backstrom T, Shanbhag V, Carstensen H (1982) Calculation of free and bound fractions of testosterone and estradiol-17 beta to human plasma proteins at body temperature. J Steroid Biochem 16:801–810

    Article  PubMed  CAS  Google Scholar 

  29. Labrie F, Belanger A, Labrie C, Candas B, Cusan L, Gomez JL (2007) Bioavailability and metabolism of oral and percutaneous dehydroepiandrosterone in postmenopausal women. J Steroid Biochem Mol Biol 107:57–69

    Article  PubMed  CAS  Google Scholar 

  30. von Muhlen D, Laughlin GA, Kritz-Silverstein D, Bergstrom J, Bettencourt R (2008) Effect of dehydroepiandrosterone supplementation on bone mineral density, bone markers, and body composition in older adults: the DAWN trial. Osteoporos Int 19:699–707

    Article  Google Scholar 

  31. Garnero P, Hausherr E, Chapuy MC, Marcelli C, Grandjean H, Muller C, Cormier C, Breart G, Meunier PJ, Delmas PD (1996) Markers of bone resorption predict hip fracture in elderly women: the EPIDOS Prospective Study. J Bone Miner Res 11:1531–1538

    Article  PubMed  CAS  Google Scholar 

  32. Chen JS, Seibel MJ, Zochling J, March L, Cameron ID, Cumming RG, Schwarz J, Simpson JM, Sambrook PN (2006) Calcaneal ultrasound but not bone turnover predicts fractures in vitamin D deficient frail elderly at high risk of falls. Calcif Tissue Int 79:37–42

    Article  PubMed  CAS  Google Scholar 

  33. Melton LJ III, Crowson CS, O’Fallon WM, Wahner HW, Riggs BL (2003) Relative contributions of bone density, bone turnover, and clinical risk factors to long-term fracture prediction. J Bone Miner Res 18:312–318

    Article  PubMed  Google Scholar 

  34. Seeman E (2006) Osteocytes—martyrs for integrity of bone strength. Osteoporos Int 17:1443–1448

    Article  PubMed  CAS  Google Scholar 

  35. Hazenberg JG, Taylor D, Lee TC (2007) The role of osteocytes and bone microstructure in preventing osteoporotic fractures. Osteoporos Int 18:1–8

    Article  PubMed  Google Scholar 

  36. Noble BS, Reeve J (2000) Osteocyte function, osteocyte death and bone fracture resistance. Mol Cell Endocrinol 159:7–13

    Article  PubMed  CAS  Google Scholar 

  37. Tomkinson A, Reeve J, Shaw RW, Noble BS (1997) The death of osteocytes via apoptosis accompanies estrogen withdrawal in human bone. J Clin Endocrinol Metab 82:3128–3135

    Article  PubMed  CAS  Google Scholar 

  38. Tomkinson A, Gevers EF, Wit JM, Reeve J, Noble BS (1998) The role of estrogen in the control of rat osteocyte apoptosis. J Bone Miner Res 13:1243–1250

    Article  PubMed  CAS  Google Scholar 

  39. Huber C, Collishaw S, Mosley JR, Reeve J, Noble BS (2007) Selective estrogen receptor modulator inhibits osteocyte apoptosis during abrupt estrogen withdrawal: implications for bone quality maintenance. Calcif Tissue Int 81:139–144

    Article  PubMed  CAS  Google Scholar 

  40. Mann V, Huber C, Kogianni G, Collins F, Noble B (2007) The antioxidant effect of estrogen and Selective Estrogen Receptor Modulators in the inhibition of osteocyte apoptosis in vitro. Bone 40:674–684

    Article  PubMed  CAS  Google Scholar 

  41. Mullender MG, Tan SD, Vico L, Alexandre C, Klein-Nulend J (2005) Differences in osteocyte density and bone histomorphometry between men and women and between healthy and osteoporotic subjects. Calcif Tissue Int 77:291–296

    Article  PubMed  CAS  Google Scholar 

  42. Qiu S, Rao DS, Palnitkar S, Parfitt AM (2003) Reduced iliac cancellous osteocyte density in patients with osteoporotic vertebral fracture. J Bone Miner Res 18:1657–1663

    Article  PubMed  Google Scholar 

  43. Baum M, Budzar AU, Cuzick J, Forbes J, Houghton JH, Klijn JG, Sahmoud T (2002) Anastrozole alone or in combination with tamoxifen versus tamoxifen alone for adjuvant treatment of postmenopausal women with early breast cancer: first results of the ATAC randomised trial. Lancet 359:2131–2139

    Article  PubMed  CAS  Google Scholar 

  44. Howell A, Cuzick J, Baum M, Buzdar A, Dowsett M, Forbes JF, Hoctin-Boes G, Houghton J, Locker GY, Tobias JS (2005) Results of the ATAC (Arimidex, Tamoxifen, Alone or in Combination) trial after completion of 5 years’ adjuvant treatment for breast cancer. Lancet 365:60–62

    Article  PubMed  CAS  Google Scholar 

  45. Baron YM, Brincat MP, Galea R, Calleja N (2005) Intervertebral disc height in treated and untreated overweight post-menopausal women. Hum Reprod 20:3566–3570

    Article  PubMed  Google Scholar 

  46. Gambacciani M, Pepe A, Cappagli B, Palmieri E, Genazzani AR (2007) The relative contributions of menopause and aging to postmenopausal reduction in intervertebral disk height. Climacteric 10:298–305

    Article  PubMed  CAS  Google Scholar 

  47. Lee JS, Ettinger B, Stanczyk FZ, Vittinghoff E, Hanes V, Cauley JA, Chandler W, Settlage J, Beattie MS, Folkerd E, Dowsett M, Grady D, Cummings SR (2006) Comparison of methods to measure low serum estradiol levels in postmenopausal women. J Clin Endocrinol Metab 91:3791–3797

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The OPUS study was sponsored by Eli Lilly, Sanofi-aventis, Procter & Gamble Pharmaceuticals, Hoffman-La Roche, Pfizer, and Novartis. We acknowledge the support of the National Institute for Health Research, UK, via its Biomedical Research Units funding scheme. The authors acknowledge Richard Jacques and Mike Bradburn, University of Sheffield School of Health and Related Research, for their statistical advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Finigan.

Additional information

The authors have stated that they have no conflict of interest.

The views expressed in this publication are those of the authors and not necessarily those of the NHS, the NIHR or the Department of Health.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Finigan, J., Gossiel, F., Glüer, C.C. et al. Endogenous Estradiol and The Risk of Incident Fracture in Postmenopausal Women: The OPUS Study. Calcif Tissue Int 91, 59–68 (2012). https://doi.org/10.1007/s00223-012-9611-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-012-9611-8

Keywords

Navigation