Skip to main content
Log in

Early Response of Bone Marrow Osteoprogenitors to Skeletal Unloading and Sclerostin Antibody

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Sclerostin functions as an antagonist to Wnt signaling and inhibits bone-forming activity. We studied the effects of skeletal unloading and treatment with sclerostin antibody (Scl-Ab) on mesenchymal stem cell, osteoprogenitor and osteoclast precursor pools, and their relationship to bone formation and resorption. Male C57BL/6 mice (5-months-old) were hind limb unloaded for 1 week or allowed normal ambulation and treated with Scl-Ab (25 mg/kg, s.c. injections on days 1 and 4) or placebo. Unloading decreased the serum concentration of bone formation marker P1NP (−35 %), number of colony-forming units (CFU) (−38 %), alkaline phosphatase–positive CFUs (CFU-AP+) (−51 %), and calcified nodules (−35 %); and resulted in a fourfold increase in the number of osteoclast precursors. The effects of Scl-Ab treatment on unloaded and normally loaded mice were nearly identical; Scl-Ab increased serum P1NP and the number of CFU, CFU-AP+, and calcified nodules in ex vivo cultures; and increased osteoblast and bone mineralizing surfaces in vivo. Although the marrow-derived osteoclast precursor population increased with Scl-Ab, the bone osteoclast surface did not change, and the serum concentration of osteoclast activity marker TRACP5b decreased. Our data suggest that short-term Scl-Ab treatment can prevent the decrease in osteoprogenitor population associated with skeletal unloading and increase osteoblast surface and bone mineralizing surface in unloaded animals. The anabolic effects of Scl-Ab treatment on bone are preserved during skeletal unloading. These findings suggest that Scl-Ab treatment can both increase bone formation and decrease bone resorption, and provide a new means for prevention and treatment of disuse osteoporosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Yaccoby S, Ling W, Zhan F, Walker R, Barlogie B, Shaughnessy JD Jr (2007) Antibody-based inhibition of DKK1 suppresses tumor-induced bone resorption and multiple myeloma growth in vivo. Blood 109:2106–2111

    Article  PubMed  CAS  Google Scholar 

  2. Bodine P, Stauffer B, Ponce-de-Leon H, Bhat B, Mangine A, Seestaller-Wehr L (2007) A small molecule inhibitor of the Wnt antagonist secreted frizzled-related protein (SFRP)-1 stimulates bone formation. Abstracts of the 29th Annual Meeting of the American Society for Bone and Mineral Research

  3. Kulkarni NH, Wei T, Kumar A, Dow ER, Stewart TR, Shou J, N’Cho M, Sterchi DL, Gitter BD, Higgs RE, Halladay DL, Engler TA, Martin TJ, Bryant HU, Ma YL, Onyia JE (2007) Changes in osteoblast, chondrocyte, and adipocyte lineages mediate the bone anabolic actions of PTH and small molecule GSK-3 inhibitor. J Cell Biochem 102:1504–1518

    Article  PubMed  CAS  Google Scholar 

  4. Padhi D, Jang G, Stouch B, Fang L, Posvar E (2011) Single-dose, placebo-controlled, randomized study of AMG 785, a sclerostin monoclonal antibody. J Bone Miner Res 26:19–26

    Article  PubMed  CAS  Google Scholar 

  5. Bennett CN, Longo KA, Wright WS, Suva LJ, Lane TF, Hankenson KD, MacDougald OA (2005) Regulation of osteoblastogenesis and bone mass by Wnt10b. Proc Natl Acad Sci U S A 102:3324–3329

    Article  PubMed  CAS  Google Scholar 

  6. Andrade AC, Nilsson O, Barnes KM, Baron J (2007) Wnt gene expression in the post-natal growth plate: regulation with chondrocyte differentiation. Bone 40:1361–1369

    Article  PubMed  CAS  Google Scholar 

  7. Poole KE, van Bezooijen RL, Loveridge N, Hamersma H, Papapoulos SE, Lowik CW, Reeve J (2005) Sclerostin is a delayed secreted product of osteocytes that inhibits bone formation. FASEB J 19:1842–1844

    PubMed  CAS  Google Scholar 

  8. Irie K, Ejiri S, Sakakura Y, Shibui T, Yajima T (2008) Matrix mineralization as a trigger for osteocyte maturation. J Histochem Cytochem 56:561–567

    Article  PubMed  CAS  Google Scholar 

  9. Li X, Ominsky MS, Niu QT, Sun N, Daugherty B, D’Agostin D, Kurahara C, Gao Y, Cao J, Gong J, Asuncion F, Barrero M, Warmington K, Dwyer D, Stolina M, Morony S, Sarosi I, Kostenuik PJ, Lacey DL, Simonet WS, Ke HZ, Paszty C (2008) Targeted deletion of the sclerostin gene in mice results in increased bone formation and bone strength. J Bone Miner Res 23:860–869

    Article  PubMed  Google Scholar 

  10. Li X, Warmington KS, Niu QT, Asuncion FJ, Barrero M, Grisanti M, Dwyer D, Stouch B, Thway TM, Stolina M, Ominsky MS, Kostenuik PJ, Simonet WS, Paszty C, Ke HZ (2010) Inhibition of sclerostin by monoclonal antibody increases bone formation, bone mass, and bone strength in aged male rats. J Bone Miner Res 25:2647–2656

    Article  PubMed  Google Scholar 

  11. Li X, Ominsky MS, Warmington KS, Morony S, Gong J, Cao J, Gao Y, Shalhoub V, Tipton B, Haldankar R, Chen Q, Winters A, Boone T, Geng Z, Niu QT, Ke HZ, Kostenuik PJ, Simonet WS, Lacey DL, Paszty C (2009) Sclerostin antibody treatment increases bone formation, bone mass, and bone strength in a rat model of postmenopausal osteoporosis. J Bone Miner Res 24:578–588

    Article  PubMed  CAS  Google Scholar 

  12. Glass DA 2nd, Bialek P, Ahn JD, Starbuck M, Patel MS, Clevers H, Taketo MM, Long F, McMahon AP, Lang RA, Karsenty G (2005) Canonical Wnt signaling in differentiated osteoblasts controls osteoclast differentiation. Dev Cell 8:751–764

    Article  PubMed  CAS  Google Scholar 

  13. Spencer GJ, Utting JC, Etheridge SL, Arnett TR, Genever PG (2006) Wnt signalling in osteoblasts regulates expression of the receptor activator of NFkappaB ligand and inhibits osteoclastogenesis in vitro. J Cell Sci 119:1283–1296

    Article  PubMed  CAS  Google Scholar 

  14. Valencia J, Hernandez-Lopez C, Martinez VG, Hidalgo L, Zapata AG, Vicente A, Varas A, Sacedon R (2010) Transient beta-catenin stabilization modifies lineage output from human thymic CD34+CD1a progenitors. J Leukoc Biol 87:405–414

    Article  PubMed  CAS  Google Scholar 

  15. Takahashi N, Maeda K, Ishihara A, Uehara S, Kobayashi Y (2011) Regulatory mechanism of osteoclastogenesis by RANKL and Wnt signals. Front Biosci 16:21–30

    Article  PubMed  CAS  Google Scholar 

  16. Kubota T, Michigami T, Ozono K (2009) Wnt signaling in bone metabolism. J Bone Miner Metab 27:265–271

    Article  PubMed  CAS  Google Scholar 

  17. Zerwekh JE, Ruml LA, Gottschalk F, Pak CY (1998) The effects of twelve weeks of bed rest on bone histology, biochemical markers of bone turnover, and calcium homeostasis in eleven normal subjects. J Bone Miner Res 13:1594–1601

    Article  PubMed  CAS  Google Scholar 

  18. Wronski TJ, Morey ER (1982) Skeletal abnormalities in rats induced by simulated weightlessness. Metab Bone Dis Relat Res 4:69–75

    Article  PubMed  CAS  Google Scholar 

  19. Bikle DD, Halloran BP (1999) The response of bone to unloading. J Bone Miner Metab 17:233–244

    Article  PubMed  CAS  Google Scholar 

  20. Morey-Holton E, Globus RK, Kaplansky A, Durnova G (2005) The hindlimb unloading rat model: literature overview, technique update and comparison with space flight data. Adv Space Biol Med 10:7–40

    Article  PubMed  Google Scholar 

  21. Sibonga JD, Zhang M, Evans GL, Westerlind KC, Cavolina JM, Morey-Holton E, Turner RT (2000) Effects of spaceflight and simulated weightlessness on longitudinal bone growth. Bone 27:535–540

    Article  PubMed  CAS  Google Scholar 

  22. Halloran BP, Bikle DD, Wronski TJ, Globus RK, Levens MJ, Morey-Holton E (1986) The role of 1,25-dihydroxyvitamin D in the inhibition of bone formation induced by skeletal unloading. Endocrinology 118:948–954

    Article  PubMed  CAS  Google Scholar 

  23. Sessions ND, Halloran BP, Bikle DD, Wronski TJ, Cone CM, Morey-Holton E (1989) Bone response to normal weight bearing after a period of skeletal unloading. Am J Physiol 257:E606–E610

    PubMed  CAS  Google Scholar 

  24. Dehority W, Halloran BP, Bikle DD, Curren T, Kostenuik PJ, Wronski TJ, Shen Y, Rabkin B, Bouraoui A, Morey-Holton E (1999) Bone and hormonal changes induced by skeletal unloading in the mature male rat. Am J Physiol 276:E62–E69

    PubMed  CAS  Google Scholar 

  25. Machwate M, Zerath E, Holy X, Pastoureau P, Marie PJ (1994) Insulin-like growth factor-I increases trabecular bone formation and osteoblastic cell proliferation in unloaded rats. Endocrinology 134:1031–1038

    Article  PubMed  CAS  Google Scholar 

  26. Amblard D, Lafage-Proust MH, Laib A, Thomas T, Ruegsegger P, Alexandre C, Vico L (2003) Tail suspension induces bone loss in skeletally mature mice in the C57BL/6J strain but not in the C3H/HeJ strain. J Bone Miner Res 18:561–569

    Article  PubMed  Google Scholar 

  27. Wronski TJ, Morey ER (1983) Inhibition of cortical and trabecular bone formation in the long bones of immobilized monkeys. Clin Orthop Relat Res 181:269–276

    PubMed  Google Scholar 

  28. Robling AG, Niziolek PJ, Baldridge LA, Condon KW, Allen MR, Alam I, Mantila SM, Gluhak-Heinrich J, Bellido TM, Harris SE, Turner CH (2008) Mechanical stimulation of bone in vivo reduces osteocyte expression of Sost/sclerostin. J Biol Chem 283:5866–5875

    Article  PubMed  CAS  Google Scholar 

  29. Papanicolaou SE, Phipps RJ, Fyhrie DP, Genetos DC (2009) Modulation of sclerostin expression by mechanical loading and bone morphogenetic proteins in osteogenic cells. Biorheology 46:389–399

    PubMed  CAS  Google Scholar 

  30. Galea GL, Sunters A, Meakin LB, Zaman G, Sugiyama T, Lanyon LE, Price JS (2011) Sost down-regulation by mechanical strain in human osteoblastic cells involves PGE2 signaling via EP4. FEBS Lett 585:2450–2454

    Article  PubMed  CAS  Google Scholar 

  31. Sakai A, Nakamura T (2001) Changes in trabecular bone turnover and bone marrow cell development in tail-suspended mice. J Musculoskelet Neuronal Interact 1:387–392

    PubMed  CAS  Google Scholar 

  32. David V, Lafage-Proust MH, Laroche N, Christian A, Ruegsegger P, Vico L (2006) Two-week longitudinal survey of bone architecture alteration in the hindlimb-unloaded rat model of bone loss: sex differences. Am J Physiol Endocrinol Metab 290:E440–E447

    Article  PubMed  CAS  Google Scholar 

  33. Grano M, Mori G, Minielli V, Barou O, Colucci S, Giannelli G, Alexandre C, Zallone AZ, Vico L (2002) Rat hindlimb unloading by tail suspension reduces osteoblast differentiation, induces IL-6 secretion, and increases bone resorption in ex vivo cultures. Calcif Tissue Int 70:176–185

    Article  PubMed  CAS  Google Scholar 

  34. Kodama Y, Dimai HP, Wergedal J, Sheng M, Malpe R, Kutilek S, Beamer W, Donahue LR, Rosen C, Baylink DJ, Farley J (1999) Cortical tibial bone volume in two strains of mice: effects of sciatic neurectomy and genetic regulation of bone response to mechanical loading. Bone 25:183–190

    Article  PubMed  CAS  Google Scholar 

  35. Basso N, Jia Y, Bellows CG, Heersche JN (2005) The effect of reloading on bone volume, osteoblast number, and osteoprogenitor characteristics: studies in hind limb unloaded rats. Bone 37:370–378

    Article  PubMed  Google Scholar 

  36. Lueken SA, Arnaud SB, Taylor AK, Baylink DJ (1993) Changes in markers of bone formation and resorption in a bed rest model of weightlessness. J Bone Miner Res 8:1433–1438

    Article  PubMed  CAS  Google Scholar 

  37. Minaire P, Meunier P, Edouard C, Bernard J, Courpron P (1975) Histomorphometric and biological data on osteoporosis due to immobilization. Rev Rhum Mal Osteoartic 42:479–488

    PubMed  CAS  Google Scholar 

  38. Inoue M, Tanaka H, Moriwake T, Oka M, Sekiguchi C, Seino Y (2000) Altered biochemical markers of bone turnover in humans during 120 days of bed rest. Bone 26:281–286

    Article  PubMed  CAS  Google Scholar 

  39. Tian X, Jee WS, Li X, Paszty C, Ke HZ (2011) Sclerostin antibody increases bone mass by stimulating bone formation and inhibiting bone resorption in a hindlimb-immobilization rat model. Bone 48:197–201

    Article  PubMed  CAS  Google Scholar 

  40. Halloran BP, Bikle DD, Harris J, Tanner S, Curren T, Morey-Holton E (1997) Regional responsiveness of the tibia to intermittent administration of parathyroid hormone as affected by skeletal unloading. J Bone Miner Res 12:1068–1074

    Article  PubMed  CAS  Google Scholar 

  41. Rodda SJ, McMahon AP (2006) Distinct roles for Hedgehog and canonical Wnt signaling in specification, differentiation and maintenance of osteoblast progenitors. Development 133:3231–3244

    Article  PubMed  CAS  Google Scholar 

  42. Huang JC, Sakata T, Pfleger LL, Bencsik M, Halloran BP, Bikle DD, Nissenson RA (2004) PTH differentially regulates expression of RANKL and OPG. J Bone Miner Res 19:235–244

    Article  PubMed  CAS  Google Scholar 

  43. Kostenuik PJ, Halloran BP, Morey-Holton ER, Bikle DD (1997) Skeletal unloading inhibits the in vitro proliferation and differentiation of rat osteoprogenitor cells. Am J Physiol 273:E1133–E1139

    PubMed  CAS  Google Scholar 

  44. Cao J, Venton L, Sakata T, Halloran BP (2003) Expression of RANKL and OPG correlates with age-related bone loss in male C57BL/6 mice. J Bone Miner Res 18:270–277

    Article  PubMed  CAS  Google Scholar 

  45. Agholme F, Isaksson H, Li X, Ke HZ, Aspenberg P (2011) Anti-sclerostin antibody and mechanical loading appear to influence metaphyseal bone independently in rats. Acta Orthop 82:628–632

    Article  PubMed  Google Scholar 

  46. Dufour C, Holy X, Marie PJ (2008) Transforming growth factor-beta prevents osteoblast apoptosis induced by skeletal unloading via PI3 K/Akt, Bcl-2, and phospho-Bad signaling. Am J Physiol Endocrinol Metab 294:E794–E801

    Article  PubMed  CAS  Google Scholar 

  47. Lin C, Jiang X, Dai Z, Guo X, Weng T, Wang J, Li Y, Feng G, Gao X, He L (2009) Sclerostin mediates bone response to mechanical unloading through antagonizing Wnt/beta-catenin signaling. J Bone Miner Res 24:1651–1661

    Article  PubMed  CAS  Google Scholar 

  48. Weerkamp F, Baert MR, Naber BA, Koster EE, de Haas EF, Atkuri KR, van Dongen JJ, Herzenberg LA, Staal FJ (2006) Wnt signaling in the thymus is regulated by differential expression of intracellular signaling molecules. Proc Natl Acad Sci U S A 103:3322–3326

    Article  PubMed  CAS  Google Scholar 

  49. Staal FJ, Weerkamp F, Baert MR, van den Burg CM, van Noort M, de Haas EF, van Dongen JJ (2004) Wnt target genes identified by DNA microarrays in immature CD34+ thymocytes regulate proliferation and cell adhesion. J Immunol 172:1099–1108

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Veterans Affairs Merit Review program, NASA, and the Northern California Institute for Research and Education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard Halloran.

Additional information

Thomas Wronski received research funding from Amgen Inc. Marina Stolina and Hua Zhu Ke are employed by Amgen. Marina Stolina, Hua Zhu Ke, and Thomas Wronski have stock ownership in Amgen. Other authors have stated that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shahnazari, M., Wronski, T., Chu, V. et al. Early Response of Bone Marrow Osteoprogenitors to Skeletal Unloading and Sclerostin Antibody. Calcif Tissue Int 91, 50–58 (2012). https://doi.org/10.1007/s00223-012-9610-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-012-9610-9

Keywords

Navigation