Skip to main content
Log in

Lactase Gene C/T−13910 Polymorphism, Calcium Intake, and pQCT Bone Traits in Finnish Adults

  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Genetic lactase nonpersistence may influence calcium intake and thereby bone health. We investigated in the Cardiovascular Risk in Young Finn Study whether young adults aged 31–46 years with the C/C−13910 genotype are more susceptible to reduced bone phenotypes, low-energy fractures, and low calcium intake than subjects with other lactase genotypes. We also analyzed the gene–environment interactions on bone with calcium intake and physical activity. Peripheral quantitative computed tomography bone traits were measured from the distal and shaft sites of the radius and tibia. The total number of those subjects whose nondominant forearm was measured and the lactase genotype was defined was 1551. Information on diet, lifestyle factors, and fractures was collected with questionnaires. The mean intake of calcium was the lowest in men with the C/C−13910 genotype (P = 0.001). Men with the T/T−13910 genotype had ~3% higher trabecular density at the distal radius and distal tibia compared to other lactase genotypes (P = 0.03 and 0.02, respectively). In women, we found no evidence of the gene effect at the radius and tibia. No major interactions of the C/T−13910 polymorphism with calcium intake or physical activity on bone phenotypes were found in either sex. In conclusion, the C/T−13910 polymorphism was associated with trabecular density at the distal radius and tibia in men. These differences may be due to the differences in calcium intake between the lactase genotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Enattah NS, Sahi T, Savilahti E, Terwilliger JD, Peltonen L, Järvelä I (2002) Identification of a variant associated with adult-type hypolactasia. Nat Genet 30:233–237

    Article  CAS  PubMed  Google Scholar 

  2. Kuokkanen M, Enattah NS, Oksanen A, Savilahti E, Orpana A, Järvelä I (2003) Transcriptional regulation of the lactase-phlorizin hydrolase gene by polymorphisms associated with adult-type hypolactasia. Gut 52:647–652

    Article  CAS  PubMed  Google Scholar 

  3. Sahi T (1994) Genetics and epidemiology of adult-type hypolactasia. Scand J Gastroenterol 202(Suppl):7–20

    Article  CAS  Google Scholar 

  4. Rasinperä H, Savilahti E, Enattah NS, Kuokkanen M, Tötterman N, Lindahl H, Järvelä I, Kolho KL (2004) A genetic test which can be used to diagnose adult-type hypolactasia in children. Gut 53:1571–1576

    Article  PubMed  Google Scholar 

  5. Obermayer-Pietsch BM, Bonelli CM, Walter DE, Kuhn RJ, Fahrleitner-Pammer A, Berghold A, Goessler W, Stepan V, Dobnig H, Leg G, Renner W (2004) Genetic predisposition for adult lactose intolerance and relation to diet, bone density, and bone fractures. J Bone Miner Res 19:42–47

    Article  PubMed  Google Scholar 

  6. Lehtimäki T, Hemminki J, Rontu R, Mikkilä V, Räsänen L, Laaksonen M, Hutri-Kähönen N, Kähönen M, Viikari J, Raitakari O (2006) The effects of adult-type hypolactasia on body height growth and dietary calcium intake from childhood into young adulthood: a 21-year follow-up study. The Cardiovascular Risk in Young Finns Study. Pediatrics 118:1553–1559

    Article  PubMed  Google Scholar 

  7. Laaksonen MM, Mikkilä V, Räsänen L, Rontu R, Lehtimäki TJ, Viikari JS, Raitakari OT, Cardiovascular Risk in Young Finns Study Group (2009) Genetic lactase non-persistence, consumption of milk products and intakes of milk nutrients in Finns from childhood to young adulthood. Br J Nutr 102:8–17

    Article  CAS  PubMed  Google Scholar 

  8. Enattah NS, Sulkava R, Halonen P, Kontula K, Järvelä I (2005) Genetic variant of lactase-persistent C/T−13910 is associated with bone fractures in very old age. J Am Geriatr Soc 53:79–82

    Article  PubMed  Google Scholar 

  9. Obermayer-Pietsch BM, Gugatschka M, Reitter S, Plank W, Strele A, Walter D, Bonelli C, Goessler W, Dobnig H, Högenauer C, Renner W, Fahrleitner-Pammer A (2007) Adult-type hypolactasia and calcium availability: decreased calcium intake or impaired calcium absorption? Osteoporos Int 18:445–451

    Article  CAS  PubMed  Google Scholar 

  10. Bàcsi K, Kòsa JP, Lazàry À, Balla B, Horvàth H, Kis A, Nagy Z, Takàcs I, Lakatos P, Speer G (2009) LCT 13910 C/T polymorphism, serum calcium, and bone mineral density in postmenopausal women. Osteoporos Int 20:639–645

    Article  PubMed  Google Scholar 

  11. Enattah N, Välimäki VV, Välimäki MJ, Löyttyniemi E, Sahi T, Järvelä I (2004) Molecularly defined lactose malabsorption, peak bone mass and bone turnover rate in young Finnish men. Calcif Tissue Int 75:488–493

    Article  CAS  PubMed  Google Scholar 

  12. Enattah N, Pekkarinen T, Välimäki MJ, Löyttyniemi E, Järvelä I (2005) Genetically defined adult-type hypolactasia and self-reported lactose intolerance as risk factors of osteoporosis in Finnish postmenopausal women. Eur J Clin Nutr 59:1105–1111

    Article  CAS  PubMed  Google Scholar 

  13. Gugatschka M, Hoeller A, Fahrleitner-Pammer A, Dobnig H, Pietschmann P, Kudlacek S, Obermayer-Pietsch B (2007) Calcium supply, bone mineral density and genetically defined lactose maldigestion in a cohort of elderly men. J Endocrinol Invest 30:46–51

    CAS  PubMed  Google Scholar 

  14. Laaksonen MM, Impivaara O, Sievänen H, Viikari JS, Lehtimäki TJ, Lamberg-Allardt CJ, Kärkkäinen MU, Välimäki M, Heikkinen J, Kröger LM, Kröger HP, Jurvelin JS, Kähönen MA, Raitakari OT, Cardiovascular Risk in Young Finns Study Group (2009) Associations of genetic lactase non-persistance and sex with bone loss in young adulthood. Bone 44:1003–1009

    Article  CAS  PubMed  Google Scholar 

  15. Nordin BEC (1997) Calcium in health and disease. Food Nutr Agric 20:13–26

    Google Scholar 

  16. Välimäki MJ, Kärkkäinen M, Lamberg-Allardt C, Laitinen K, Alhava E, Heikkinen J, Impivaara O, Mäkelä P, Palmgren J, Seppänen R, Vuori I, The Cardiovascular Risk in Young Finns Study Group (1994) Exercise, smoking, and calcium intake during adolescence and early adulthood as determinants of peak bone mass. BMJ 309:230–235

    PubMed  Google Scholar 

  17. Wang Q, Seeman E (2008) Skeletal growth and peak bone strength. Best Pract Res Clin Endocrinol Metab 22:687–700

    Article  PubMed  Google Scholar 

  18. Paturi M, Tapanainen H, Reinivuo H, Pietinen P (2008) The National FINDIET 2007 survey. Publications of National Public Health Institute, Series B, vol B23, p 79

  19. Raitakari OT, Juonala M, Rönnemaa T, Keltikangas-Järvinen L, Räsänen L, Pietikäinen M, Hutri-Kähönen N, Taittonen L, Jokinen E, Marniemi J, Jula A, Telama R, Kähönen M, Lehtimäki T, Åkerblom HK, Viikari JS (2008) Cohort profile: the Cardiovascular Risk in Young Finns Study. Int J Epidemiol 37:1220–1226

    Article  PubMed  Google Scholar 

  20. Sievänen H, Koskue V, Rauhio A, Kannus P, Heinonen A, Vuori I (1998) Peripheral quantitative computed tomography in human long bones: evaluation of in vitro and in vivo precision. J Bone Miner Res 13:871–882

    Article  PubMed  Google Scholar 

  21. Kontulainen S, Sievanen H, Kannus P, Pasanen M, Vuori I (2002) Effect of long-term impact-loading on mass, size, and estimated strength of humerus and radius of female racquet-sports players: a peripheral quantitative computed tomography study between young and old starters and controls. J Bone Miner Res 17:2281–2289

    Article  PubMed  Google Scholar 

  22. Rantalainen T, Sievänen H, Linnamo V, Hoffrèn M, Ishikawa M, Kyröläinen H, Avela J, Selänne H, Komi PV, Heinonen A (2009) Bone rigidity to neuromuscular performance ratio in young and elderly men. Bone 45:956–963

    Article  CAS  PubMed  Google Scholar 

  23. Nikander R, Kannus P, Dastidar P, Hannula M, Harrison L, Cervinka T, Narra NG, Aktour R, Arola T, Eskola H, Soimakallio S, Heinonen A, Hyttinen J, Sievänen H (2009) Targeted exercises against hip fragility. Osteoporos Int 20:1321–1328

    Article  CAS  PubMed  Google Scholar 

  24. Livak KJ (1999) Allelic discrimination using fluorogenic probes and the 5′ nuclease assay. Genet Anal 14:143–149

    CAS  PubMed  Google Scholar 

  25. Laaksonen MML, Sievänen H, Tolonen S, Mikkilä V, Räsänen L, Viikari J, Lehtimäki T, Kähönen M, Raitakari OT, The Cardiovascular Risk in Young Finns Study Group (2010) Determinants of bone strength and fracture incidence in adult Finns: Cardiovascular Risk in Young Finns Study (the GENDI pQCT study). Arch Osteoporos. doi:10.1007/s11657-010-0043-7

  26. Paalanen L, Männistö S, Virtanen MJ (2006) Validity of a food frequency questionnaire varied by age and body mass index. J Clin Epidemiol 59:994–1001

    Article  PubMed  Google Scholar 

  27. National Institute for Health and Welfare, Nutrition Unit (2009) Fineli. Finnish food composition database. Release 10, Helsinki. http://www.fineli.fi

  28. Willett WC (1998) Nutritional epidemiology, 2nd edn. Oxford University Press, New York

    Book  Google Scholar 

  29. Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249

    Google Scholar 

  30. Larson NI, Neumark-Sztainer D, Harnack L, Wall M, Story M, Eisenberg ME (2009) Calcium and dairy intake: longitudinal trends during the transition to young adulthood and correlates of calcium intake. J Nutr Educ Behav 41:254–260

    Article  PubMed  Google Scholar 

  31. Boonen S, Lips P, Bouillon R, Heike A, Bischoff-Ferrari HA, Vanderschueren D, Haentjens P (2007) Need for additional calcium to reduce the risk of hip fracture with vitamin D supplementation: evidence from a comparative metaanalysis of randomized controlled trials. J Clin Endocrinol Metab 92:1415–1423

    Article  CAS  PubMed  Google Scholar 

  32. Tang BMP, Eslick GD, Nowson C, Smith C, Bensoussan A (2007) Use of calcium or calcium in combination with D supplementation to prevent fractures and bone loss in people aged 50 years and older: a meta-analysis. Lancet 307:657–666

    Article  Google Scholar 

  33. Wizenberg T, Shaw K, Fryer J, Jones G (2006) Effects of calcium supplementation on bone density in healthy children: meta-analysis of randomised controlled trials. BMJ 333:775

    Article  Google Scholar 

  34. Huncharek M, Muscat J, Kupelnick B (2008) Impact of dairy products and dietary calcium on bone-mineral content in children: results of a meta-analysis. Bone 43:312–321

    Article  CAS  PubMed  Google Scholar 

  35. Matkovic V, Heaney RP (1992) Calcium balance during human growth: evidence for threshold behaviour. Am J Clin Nutr 55:992–996

    CAS  PubMed  Google Scholar 

  36. Weaver CM, Martin BR, Plawecki KL (1995) Differences in calcium metabolism between adolescent and adult females. Am J Clin Nutr 61:577–581

    CAS  PubMed  Google Scholar 

  37. Kettunen J, Silander K, Saarela O, Amin N, Müller M, Timpson N, Surakka I, Ripatti S, Laitinen J, Hartikainen AL, Pouta A, Lahermo P, Anttila V, Männistö S, Jula A, Virtamo J, Salomaa V, Lehtimäki T, Raitakari O, Gieger C, Wichmann EH, Van Duijn CM, Smith GD, McCarthy MI, Järvelin MR, Perola M, Peltonen L (2010) European lactase persistence genotype shows evidence of association with increase in body mass index. Hum Mol Genet 19:1129–1136

    Article  CAS  PubMed  Google Scholar 

  38. Sievänen H (2005) Hormonal influences on the muscle–bone feedback system: a perspective. J Musculoskelet Neuronal Interact 5:255–261

    PubMed  Google Scholar 

  39. Sievänen H (2000) A physical model for dual-energy X-ray absorptiometry–derived bone mineral density. Invest Radiol 35:325–330

    Article  PubMed  Google Scholar 

  40. Engelke K, Adams JE, Armbrecht G, Augat P, Bogado CE, Bouxsein ML, Felsenberg D, Ito M, Prevrhal S, Hans DB, Lewiecki EM (2008) Clinical use of quantitative computed tomography and peripheral quantitative computed in the managment of osteoporosis in adults: the 2007 ISCD official positions. J Clin Densitom 11:123–162

    Article  PubMed  Google Scholar 

  41. Vico L, Zouch M, Amirouche A, Frère D, Laroche N, Koller B, Laib A, Thomas T, Alexandre C (2008) High-resolution pQCT analysis at the distal radius and tibia discriminated patients with recent wrist and femoral neck fractures. J Bone Miner Res 23:1741–1750

    Article  PubMed  Google Scholar 

  42. Kontulainen SA, Johnston JD, Liu D, Leung C, Oxland TR, McKay HA (2008) Strength indices from pQCT imaging predict up to 85% of variance in bone failure properties at tibial epiphysis and diaphysis. J Musculoskelet Neuronal Interact 8:401–409

    CAS  PubMed  Google Scholar 

  43. Uusi-Rasi K, Sievänen H, Pasanen M, Oja P, Vuori I (2002) Associations of calcium intake and physical activity with bone density and size in premenopausal and postmenopausal women: a peripheral quantitative computed tomography study. J Bone Miner Res 17:544–552

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Academy of Finland (grants 117797 and 121584) and by Tampere and Turku University Hospital Medical Funds. We thank the National Graduate School of Musculoskeletal Disorders and Biomaterials (TBGS).

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Sanna Tolonen.

Additional information

The authors have stated that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tolonen, S., Laaksonen, M., Mikkilä, V. et al. Lactase Gene C/T−13910 Polymorphism, Calcium Intake, and pQCT Bone Traits in Finnish Adults. Calcif Tissue Int 88, 153–161 (2011). https://doi.org/10.1007/s00223-010-9440-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-010-9440-6

Keywords

Navigation