Skip to main content
Log in

Increases in Hip and Spine Bone Mineral Density are Predictive for Vertebral Antifracture Efficacy with Ibandronate

  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

The relationship between bisphosphonate-induced bone mineral density (BMD) gains and antifracture efficacy remains to be fully elucidated. Data from two antifracture studies were analyzed. Postmenopausal osteoporotic women received oral (2.5 mg daily, 20 mg intermittent) or intravenous (0.5 mg, 1 mg quarterly) ibandronate. Outcome measures included moving averages plots and logistic regression analyses of the relationship between BMD change and vertebral fracture rate. In moving averages plots, ibandronate-induced BMD gains were consistently associated with decreased fracture rates. In the oral study, total-hip BMD increases at years 2 and 3 and lumbar spine BMD increases at year 3 were associated with 3-year vertebral fracture rate (relative risk reduction [RRR] at year 3 for 1% change from baseline: hip, 7.9% [95% CI 2.1–13.5%, P = 0.0084]; lumbar spine, 4.7% [−0.1% to 9.3%, P = 0.0565]). In the intravenous study, total-hip BMD increases at years 1, 2, and 3 and lumbar spine BMD increases at years 2 and 3 were significantly associated with vertebral fracture rate (RRR at year 3 for 1% change from baseline: hip, 11.6% [7.0–16.0%, P < 0.0001]; lumbar spine, 6.9% [2.9–10.6%, P = 0.0008]). In a pooled analysis, changes in total-hip and lumbar spine BMD were associated with 3-year vertebral fracture risk reduction and explained a substantial proportion of the antifracture effect (23–37% at 2 and 3 years). This analysis suggests that ibandronate-induced BMD gain in postmenopausal osteoporotic women is associated with vertebral fracture risk reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Cheng XG, Lowet G, Boonen S, Nicholson PH, Van der Perre G, Dequeker J (1998) Prediction of vertebral and femoral strength in vitro by bone mineral density measured at different skeletal sites. J Bone Miner Res 13:1439–1443. doi:10.1359/jbmr.1998.13.9.1439

    Article  CAS  PubMed  Google Scholar 

  2. Cummings SR, Black DM, Nevitt MC, Browner W, Cauley J, Ensrud K, Scott J, Vogt TM (1993) Bone density at various sites for prediction of hip fractures. The Study of Osteoporotic Fractures Research Group. Lancet 341:72–75. doi:10.1016/0140-6736(93)92555-8

    Article  CAS  PubMed  Google Scholar 

  3. Melton LJ 3rd, Atkinson EJ, O’Fallon WM, Wahner HW, Riggs BL (1993) Long-term fracture prediction by bone mineral assessed at different skeletal sites. J Bone Miner Res 8:1227–1233. doi:10.1002/jbmr.5650081010

    Article  PubMed  Google Scholar 

  4. Cummings SR, Karpf DB, Harris F, Genant HK, Ensrud K, LaCroix AZ, Black DM (2002) Improvement in spine bone density and reduction in risk of vertebral fractures during treatment with antiresorptive drugs. Am J Med 112:281–289

    Article  CAS  PubMed  Google Scholar 

  5. Hochberg MC, Greenspan S, Wasnich RD, Miller P, Thompson DE, Ross PD (2002) Changes in bone density and turnover explain the reductions in incidence of nonvertebral fractures that occur during treatment with antiresorptive agents. J Clin Endocrinol Metab 87:1586–1592

    Article  CAS  PubMed  Google Scholar 

  6. Miller PD (2005) Bone density and markers of bone turnover in predicting fracture risk and how changes in these measures predict fracture risk reduction. Curr Osteoporos Rep 3:103–110

    Article  PubMed  Google Scholar 

  7. Miller PD, Hochberg MC, Wehren LE, Ross PD, Wasnich RD (2005) How useful are measures of BMD and bone turnover? Curr Med Res Opin 21:545–554. doi:10.1185/030079905X41390

    Article  PubMed  Google Scholar 

  8. Wasnich RD, Miller PD (2000) Antifracture efficacy of antiresorptive agents are related to changes in bone density. J Clin Endocrinol Metab 85:231–236

    Article  CAS  PubMed  Google Scholar 

  9. Watts NB, Cooper C, Lindsay R, Eastell R, Manhart MD, Barton IP (2004) Relationship between changes in bone mineral density and vertebral fracture risk associated with risedronate: greater increases in bone mineral density do not relate to greater decreases in fracture risk. J Clin Densitom 7:255–261. doi:10.1385/JCD:7:3:255

    Article  PubMed  Google Scholar 

  10. Chen P, Miller PD, Delmas PD, Misurski DA, Krege JH (2006) Change in lumbar spine BMD and vertebral fracture risk reduction in teriparatide-treated postmenopausal women with osteoporosis. J Bone Miner Res 21:1785–1790. doi:10.1359/JBMR.060802

    Article  CAS  PubMed  Google Scholar 

  11. Watts NB, Miller PD, Kohlmeier LA, Sebba A, Chen P, Wong M, Krohn K (2009) Vertebral fracture risk is reduced in women who lose femoral neck BMD with teriparatide treatment. J Bone Miner Res 24:1125–1131. doi:10.1359/JBMR.081256

    Article  CAS  PubMed  Google Scholar 

  12. Delmas PD, Li Z, Cooper C (2004) Relationship between changes in bone mineral density and fracture risk reduction with antiresorptive drugs: some issues with meta-analyses. J Bone Miner Res 19:330–337. doi:10.1359/JBMR.0301228

    Article  CAS  PubMed  Google Scholar 

  13. Delmas PD, Seeman E (2004) Changes in bone mineral density explain little of the reduction in vertebral or nonvertebral fracture risk with anti-resorptive therapy. Bone 34:599–604. doi:10.1016/j.bone.2003.12.022

    Article  CAS  PubMed  Google Scholar 

  14. Li Z, Chines AA, Meredith MP (2004) Statistical validation of surrogate endpoints: is bone density a valid surrogate for fracture? J Musculoskelet Neuronal Interact 4:64–74

    CAS  PubMed  Google Scholar 

  15. Sarkar S, Reginster JY, Crans GG, Diez-Perez A, Pinette KV, Delmas PD (2004) Relationship between changes in biochemical markers of bone turnover and BMD to predict vertebral fracture risk. J Bone Miner Res 19:394–401. doi:10.1359/JBMR.0301243

    Article  PubMed  Google Scholar 

  16. Watts NB, Geusens P, Barton IP, Felsenberg D (2005) Relationship between changes in BMD and nonvertebral fracture incidence associated with risedronate: reduction in risk of nonvertebral fracture is not related to change in BMD. J Bone Miner Res 20:2097–2104. doi:10.1359/JBMR.050814

    Article  PubMed  Google Scholar 

  17. Freedman LS, Graubard BI, Schatzkin A (1992) Statistical validation of intermediate endpoints for chronic diseases. Stat Med 11:167–178. doi:10.1002/sim.4780110204

    Article  CAS  PubMed  Google Scholar 

  18. Shih J, Bauer DC, Orloff J, Capizzi T, Thompson D, Oppenheimer L, Ross PD (2002) Proportion of fracture risk reduction explained by BMD changes using Freedman analysis depends on choice of predictors. Osteoporos Int 13(Suppl 3):S38–S39 (abstract P79)

    Google Scholar 

  19. Russell R, Watts N, Ebetino F, Rogers MJ (2008) Mechanisms of action of bisphosphonates: similarities and differences and their potential influence on clinical safety. Osteoporos Int 19:733–759. doi:10.1007/s00198-007-0540-8

    Article  CAS  PubMed  Google Scholar 

  20. Leu C, Luegmayr E, Freedman L, Rodan GA, Reszka AA (2006) Relative binding affinities of bisphosphonates for human bone and relationship to antiresorptive efficacy. Bone 38:628–636. doi:10.1016/j.bone.2005.07.023

    Article  CAS  PubMed  Google Scholar 

  21. Nancollas GH, Tang R, Phipps RJ, Henneman Z, Guide S, Wu W, Mangood A, Russell RGG, Ebetino FH (2006) Novel insights into actions of bisphosphonates on bone: differences in interactions with hydroxyapatite. Bone 38:617–627. doi:10.1016/j.bone.2005.05.003

    Article  CAS  PubMed  Google Scholar 

  22. Chesnut CH III, Skag A, Christiansen C, Recker R, Stakkestad JA, Hoiseth A, Felsenberg D, Huss H, Gilbride J, Schimmer RC, Delmas PD, for the Oral Ibandronate Osteoporosis Vertebral Fracture Trial in North America, Europe (BONE) (2004) Effects of oral ibandronate administered daily or intermittently on fracture risk in postmenopausal osteoporosis. J Bone Miner Res 19:1241–1249. doi:10.1359/JBMR.040325

    Article  CAS  Google Scholar 

  23. Delmas PD, Recker RR, Chesnut CH III, Skag A, Stakkestad JA, Emkey R, Gilbride J, Schimmer RC, Christiansen C, for the Oral Ibandronate Osteoporosis Vertebral Fracture Trial in North America, Europe (BONE) (2004) Daily and intermittent oral ibandronate normalize bone turnover and provide significant reduction in vertebral fracture risk: results from the BONE study. Osteoporos Int 15:792–798. doi:10.1007/s00198-004-1602-9

    Article  CAS  PubMed  Google Scholar 

  24. Miller PD, McClung MR, Macovei L, Stakkestad JA, Luckey M, Bonvoisin B, Reginster JY, Recker RR, Hughes C, Lewiecki EM, Felsenberg D, Delmas PD, Kendler DL, Bolognese ML, Mairon N, Cooper C (2005) Monthly oral ibandronate therapy in postmenopausal osteoporosis: 1-year results from the MOBILE study. J Bone Miner Res 20:1315–1322. doi:10.1359/JBMR.050313

    Article  CAS  PubMed  Google Scholar 

  25. Recker R, Stakkestad JA, Chesnut CH III, Christiansen C, Skag A, Hoiseth A, Ettinger M, Mahoney P, Schimmer RC, Delmas PD (2004) Insufficiently dosed intravenous ibandronate injections are associated with suboptimal antifracture efficacy in postmenopausal osteoporosis. Bone 34:890–899. doi:10.1016/j.bone.2004.01.008

    Article  CAS  PubMed  Google Scholar 

  26. Papapoulos SE, Schimmer RC (2007) Changes in bone remodelling and antifracture efficacy of intermittent bisphosphonate therapy: implications from clinical studies with ibandronate. Ann Rheum Dis 66:853–858

    CAS  PubMed  Google Scholar 

  27. Prentice RL (1989) Surrogate endpoints in clinical trials: definition and operational criteria. Stat Med 8:431–440. doi:10.1002/sim.4780080407

    Article  CAS  PubMed  Google Scholar 

  28. Lippuner K, Johansson H, Kanis JA, Rizzoli R (2009) FRAX® assessment of osteoporotic fracture probability in Switzerland. Osteoporos Int. doi:10.1007/s00198-009-0975-1

  29. Kanis JA, Johnell O, Odena A, Johansson H, McCloskey E (2008) FRAX™ and the assessment of fracture probability in men and women from the UK. Osteoporos Int 19:385–397. doi:10.1007/s00198-007-0543-5

    Article  CAS  PubMed  Google Scholar 

  30. Sebba A, Emkey R, Blumentals WA, Sambrook P (2007) Relationship between increasing annual cumulative exposure to ibandronate, increases in BMD and reductions in clinical fractures. J Bone Miner Res 22(Suppl 1):S454 (abstract W365)

    Google Scholar 

Download references

Acknowledgments

We dedicate this work to Professor Delmas, who sadly passed away during the preparation of this manuscript. We are indebted to all those who have contributed to the conduct and analysis of the BONE and IV ibandronate studies. We also acknowledge medical writing assistance provided by Charlotte Kennerley, Catherine Lee, and Louise Profit (Gardiner-Caldwell Communications) in the preparation of this manuscript, funding for which was provided by F. Hoffmann-La Roche.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul D. Miller.

Additional information

P. D. and S. A. have received consultant and speaker fees as well as a research grant from Roche; P. M. and R. R. are consultants and members of Roche advisory boards and invited speakers for Roche; K. P. is an employee of Roche Products, Ltd., and R. S. is an employee of F. Hoffmann-La Roche, Ltd.; at the time of the analysis included in this report H. H. was an employee of F. Hoffmann-La Roche, Ltd.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miller, P.D., Delmas, P.D., Huss, H. et al. Increases in Hip and Spine Bone Mineral Density are Predictive for Vertebral Antifracture Efficacy with Ibandronate. Calcif Tissue Int 87, 305–313 (2010). https://doi.org/10.1007/s00223-010-9403-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-010-9403-y

Keywords

Navigation