Skip to main content

Advertisement

Log in

Evidence of Reduced Bone Turnover and Disturbed Mineralization Process in a Boy with Stickler Syndrome

  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

We describe a tall-statured 14-year-old boy who illustrated the full phenotypic and radiographic features of Stickler syndrome type I. A bone biopsy showed evidence of reduced bone mass and bone turnover, such as reduced BV/TV (–43%), TbTh (–29%), and OS/BS (–48%), Ob.S/BS (–27%), and Oc/BS (–47%) compared to “age-matched” controls. Moreover, there was evidence that the mineralization process was severely disturbed. Quantitative backscattered electron imaging revealed that the bone mineralization density distribution (BMDD) of cancellous (Cn) as well as cortical (Ct) bone was shifted toward lower mineralization compared to a young control reference cohort. BMDD parameters of mean degree of mineralization, Cn Ca (–9.8%) and Ct Ca (–18.0%), were dramatically decreased. To the best of our knowledge this is the first clinical report describing bone biopsy findings in a boy with Stickler syndrome. Such a severe undermineralization of bone matrix might essentially contribute to the compromised mechanical competence of the skeleton found in this patient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. SJB PW (2002) Bone dysplasias. Oxford University Press, New York

    Google Scholar 

  2. Stickler GB, Belau PG, Farrell FJ, Jones JD, Pugh DG, Steinberg AG, Ward LE (1965) Hereditary progressive arthro-ophthalmopathy. Mayo Clin Proc 40:433–455

    CAS  PubMed  Google Scholar 

  3. Stickler GB, Hughes W, Houchin P (2001) Clinical features of hereditary progressive arthro-ophthalmopathy (Stickler syndrome): a survey. Genet Med 3:192–196

    Article  CAS  PubMed  Google Scholar 

  4. Rose PS, Levy HP, Liberfarb RM, Davis J, Szymko-Bennett Y, Rubin BI, Tsilou E, Griffith AJ, Francomano CA (2005) Stickler syndrome: clinical characteristics and diagnostic criteria. Am J Med Genet A 138A:199–207

    Article  PubMed  Google Scholar 

  5. Snead MP (1996) Hereditary vitreopathy. Eye 10(Pt 6):653–663

    PubMed  Google Scholar 

  6. Francomano CA, Liberfarb RM, Hirose T, Maumenee IH, Streeten EA, Meyers DA, Pyeritz RE (1988) The Stickler syndrome is closely linked to COL2A1, the structural gene for type II collagen. Pathol Immunopathol Res 7:104–106

    Article  CAS  PubMed  Google Scholar 

  7. Al Kaissi A, Klaushofer K, Grill F (2009) Osteochondritis dissecans and Osgood Schlatter disease in a family with Stickler syndrome. Pediatr Rheumatol Online J 7:4

    Article  PubMed  Google Scholar 

  8. Al Kaissi A, Ganger R, Klaushofer K, Grill F (2008) Significant ophthalmoarthropathy associated with ectodermal dysplasia in a child with Marshall-Stickler overlap: a case report. Cases J 1:270

    Article  PubMed  Google Scholar 

  9. Ghachem M, Al Kaissi A, Dridi L, Hendaoui L, Chehida F (2004) Congenital orthopaedic abnormalities and arthriticlike changes in a Tunisian family with Stickler syndrome. Case Rep Clin Pract Rev 5:CS300–CS304

    Google Scholar 

  10. Richards AJ, Baguley DM, Yates JR, Lane C, Nicol M, Harper PS, Scott JD, Snead MP (2000) Variation in the vitreous phenotype of Stickler syndrome can be caused by different amino acid substitutions in the X position of the type II collagen Gly-X-Y triple helix. Am J Hum Genet 67:1083–1094

    CAS  PubMed  Google Scholar 

  11. Niffenegger JH, Topping TM, Mukai S (1993) Stickler’s syndrome. Int Ophthalmol Clin 33:271–280

    Article  CAS  PubMed  Google Scholar 

  12. Liberfarb RM, Hirose T (1982) The Wagner-Stickler syndrome. Birth Defects Orig Article Ser 18:525–538

    CAS  Google Scholar 

  13. Snead MP, Yates JR (1999) Clinical and molecular genetics of Stickler syndrome. J Med Genet 36:353–359

    CAS  PubMed  Google Scholar 

  14. Fratzl P (2004) Structure and mechanical quality of the collagen-mineral nano-composite in bone. J Mater Chem 14:2115–2123

    Google Scholar 

  15. Seeman E, Delmas PD (2006) Bone quality—the material and structural basis of bone strength and fragility. N Engl J Med 354:2250–2261

    Article  CAS  PubMed  Google Scholar 

  16. Roschger P, Paschalis EP, Fratzl P, Klaushofer K (2008) Bone mineralization density distribution in health and disease. Bone 42:456–466

    Article  CAS  PubMed  Google Scholar 

  17. Ruffoni D, Fratzl P, Roschger P, Klaushofer K, Weinkamer R (2007) The bone mineralization density distribution as a fingerprint of the mineralization process. Bone 40:1308–1319

    Article  CAS  PubMed  Google Scholar 

  18. Glorieux FH, Travers R, Taylor A, Bowen JR, Rauch F, Norman M, Parfitt AM (2000) Normative data for iliac bone histomorphometry in growing children. Bone 26:103–109

    Article  CAS  PubMed  Google Scholar 

  19. Fratzl-Zelman N, Roschger P, Misof BM, Pfeffer S, Glorieux FH, Klaushofer K, Rauch F (2009) Normative data on mineralization density distribution in iliac bone biopsies of children, adolescents and young adults. Bone 44:1043–1048

    Article  CAS  PubMed  Google Scholar 

  20. Roschger P, Dempster DW, Zhou H, Paschalis EP, Silverberg SJ, Shane E, Bilezikian JP, Klaushofer K (2007) New observations on bone quality in mild primary hyperparathyroidism as determined by quantitative backscattered electron imaging. J Bone Miner Res 22:717–723

    Article  PubMed  Google Scholar 

  21. Zoehrer R, Roschger P, Paschalis EP, Hofstaetter JG, Durchschlag E, Fratzl P, Phipps R, Klaushofer K (2006) Effects of 3- and 5-year treatment with risedronate on bone mineralization density distribution in triple biopsies of the iliac crest in postmenopausal women. J Bone Miner Res 21:1106–1112

    Article  CAS  PubMed  Google Scholar 

  22. Misof BM, Roschger P, Cosman F, Kurland ES, Tesch W, Messmer P, Dempster DW, Nieves J, Shane E, Fratzl P, Klaushofer K, Bilezikian J, Lindsay R (2003) Effects of intermittent parathyroid hormone administration on bone mineralization density in iliac crest biopsies from patients with osteoporosis: a paired study before and after treatment. J Clin Endocrinol Metab 88:1150–1156

    Article  CAS  PubMed  Google Scholar 

  23. Boivin G, Meunier PJ (2002) The degree of mineralization of bone tissue measured by computerized quantitative contact microradiography. Calcif Tissue Int 70:503–511

    Article  CAS  PubMed  Google Scholar 

  24. Nawrot-Wawrzyniak K, Varga F, Nader A, Roschger P, Sieghart S, Zwettler E, Roetzer KM, Lang S, Weinkamer R, Klaushofer K, Fratzl-Zelman N (2009) Effects of tumor-induced osteomalacia on the bone mineralization process. Calcif Tissue Int 84:313–323

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Gerda Dinst, Daniela Gabriel, and Phaedra Messmer for careful sample preparation and qBEI measurements. This study was supported by the AUVA (Austrian Social Insurance for Occupational Risk) and the WGKK (Social Health Insurance Vienna).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Al Kaissi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Al Kaissi, A., Roschger, P., Nawrot-Wawrzyniak, K. et al. Evidence of Reduced Bone Turnover and Disturbed Mineralization Process in a Boy with Stickler Syndrome. Calcif Tissue Int 86, 126–131 (2010). https://doi.org/10.1007/s00223-009-9324-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-009-9324-9

Keywords

Navigation