Skip to main content

Advertisement

Log in

Osteoadherin is Upregulated by Mature Osteoblasts and Enhances Their In Vitro Differentiation and Mineralization

  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

During the process of differentiation, osteoblasts commit through strictly controlled checkpoints under the influence of several growth factors, cytokines, and extracellular matrix (ECM) proteins. The mineralized tissue-specific ECM component osteoadherin (OSAD) belongs to the small leucine-rich repeat protein family of proteoglycans. Proteoglycans modulate cellular behavior either through the attached glycosaminoglycan chains or by direct protein–protein interactions via the core protein sequences. Leucine-rich repeats have been shown to directly interact with cell-surface receptors such as epidermal growth factor receptor, blocking its ability to bind its ligand. In the present study, we investigated the influence of OSAD on the behavior and maturation of MC3T3E1 osteoblasts. OSAD overexpression and repression clones were created by stably transfecting with plasmids coding for either mouse OSAD cDNA or small-hairpin RNA, targeted against mouse OSAD. Overexpression of OSAD resulted in an increase of osteoblast differentiation features, such as increased alkaline phosphatase (ALP) activity and increased in vitro mineralization, as well as reduced proliferation and migration. Bone sialoprotein (BSP) levels were unchanged, while upregulation of osteocalcin (OC) and osteoglycin (OGN) was observed. Conversely, repression of OSAD expression resulted in increased cell proliferation and migration. BSP and OC were unaffected, while OGN was downregulated. ALP activity was reduced, though no change in in vitro mineralization was observed. We conclude that OSAD overexpression enhanced the differentiation and maturation of osteoblasts in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Aubin JE (2001) Regulation of osteoblast formation and function. Rev Endocr Metab Disord 2:81–94

    Article  PubMed  CAS  Google Scholar 

  2. Olsen BR, Reginato AM, Wang W (2000) Bone development. Annu Rev Cell Dev Biol 16:191–220

    Article  PubMed  CAS  Google Scholar 

  3. Long MW (2001) Osteogenesis and bone-marrow-derived cells. Blood Cells Mol Dis 27:677–690

    Article  PubMed  CAS  Google Scholar 

  4. Janssens K, ten Dijke P, Janssens S, Van Hul W (2005) Transforming growth factor-beta1 to the bone. Endocr Rev 26:743–774

    Article  PubMed  CAS  Google Scholar 

  5. Shimizu-Sasaki E, Yamazaki M, Furuyama S, Sugiya H, Sodek J, Ogata Y (2003) Identification of FGF2-response element in the rat bone sialoprotein gene promoter. Connect Tissue Res 44 Suppl 1:103–108

    Article  PubMed  Google Scholar 

  6. Bianchi G, Banfi A, Mastrogiacomo M, Notaro R, Luzzatto L, Cancedda R, Quarto R (2003) Ex vivo enrichment of mesenchymal cell progenitors by fibroblast growth factor 2. Exp Cell Res 287:98–105

    Article  PubMed  CAS  Google Scholar 

  7. Antosz ME, Bellows CG, Aubin JE (1987) Biphasic effects of epidermal growth factor on bone nodule formation by isolated rat calvaria cells in vitro. J Bone Miner Res 2:385–393

    PubMed  CAS  Google Scholar 

  8. Marie PJ, Hott M, Perheentupa J (1990) Effects of epidermal growth factor on bone formation and resorption in vivo. Am J Physiol Endocrinol Metab 258:E275–E281

    CAS  Google Scholar 

  9. Kuznetsov SA, Friedenstein AJ, Robey PG (1997) Factors required for bone marrow stromal fibroblast colony formation in vitro. Br J Haematol 97:561–570

    Article  PubMed  CAS  Google Scholar 

  10. Hocking AM, Shinomura T, McQuillan DJ (1998) Leucine-rich repeat glycoproteins of the extracellular matrix. Matrix Biol 17:1–19

    Article  PubMed  CAS  Google Scholar 

  11. Parisuthiman D, Mochida Y, Duarte WR, Yamauchi M (2005) Biglycan modulates osteoblast differentiation and matrix mineralization. J Bone Miner Res 20:1878–1886

    Article  PubMed  CAS  Google Scholar 

  12. Waddington RJ, Roberts HC, Sugars RV, Schonherr E (2003) Differential roles for small leucine-rich proteoglycans in bone formation. Eur Cell Mater 6:12–21

    PubMed  CAS  Google Scholar 

  13. Wendel M, Sommarin Y, Heinegard D (1998) Bone matrix proteins: isolation and characterization of a novel cell-binding keratan sulfate proteoglycan (osteoadherin) from bovine bone. J Cell Biol 141:839–847

    Article  PubMed  CAS  Google Scholar 

  14. Vittitow J, Borras T (2004) Genes expressed in the human trabecular meshwork during pressure-induced homeostatic response. J Cell Physiol 201:126–137

    Article  PubMed  CAS  Google Scholar 

  15. Meyer RA Jr, Meyer MH, Ashraf N, Frick S (2007) Changes in mRNA gene expression during growth in the femoral head of the young rat. Bone 40:1554–1564

    Article  PubMed  CAS  Google Scholar 

  16. Iozzo RV, Murdoch AD (1996) Proteoglycans of the extracellular environment: clues from the gene and protein side offer novel perspectives in molecular diversity and function. FASEB J 10:598–614

    PubMed  CAS  Google Scholar 

  17. Ruoslahti E, Yamaguchi Y (1991) Proteoglycans as modulators of growth factor activities. Cell 64:867–869

    Article  PubMed  CAS  Google Scholar 

  18. Goldoni S, Iozzo RA, Kay P, Campbell S, McQuillan A, Agnew C, Zhu JX, Keene DR, Reed CC, Iozzo RV (2007) A soluble ectodomain of LRIG1 inhibits cancer cell growth by attenuating basal and ligand-dependent EGFR activity. Oncogene 26:368–381

    Article  PubMed  CAS  Google Scholar 

  19. Seidler DG, Goldoni S, Agnew C, Cardi C, Thakur ML, Owens RT, McQuillan DJ, Iozzo RV (2006) Decorin protein core inhibits in vivo cancer growth and metabolism by hindering epidermal growth factor receptor function and triggering apoptosis via caspase-3 activation. J Biol Chem 281:26408–26418

    Article  PubMed  CAS  Google Scholar 

  20. Shen Z, Gantcheva S, Sommarin Y, Heinegard D (1999) Tissue distribution of a novel cell binding protein, osteoadherin, in the rat. Matrix Biol 18:533–542

    Article  PubMed  CAS  Google Scholar 

  21. Sommarin Y, Wendel M, Shen Z, Hellman U, Heinegard D (1998) Osteoadherin, a cell-binding keratan sulfate proteoglycan in bone, belongs to the family of leucine-rich repeat proteins of the extracellular matrix. J Biol Chem 273:16723–16729

    Article  PubMed  CAS  Google Scholar 

  22. Buchaille R, Couble ML, Magloire H, Bleicher F (2000) Expression of the small leucine-rich proteoglycan osteoadherin/osteomodulin in human dental pulp and developing rat teeth. Bone 27:265–270

    Article  PubMed  CAS  Google Scholar 

  23. Couble ML, Bleicher F, Farges JC, Peyrol S, Lucchini M, Magloire H, Staquet MJ (2004) Immunodetection of osteoadherin in murine tooth extracellular matrices. Histochem Cell Biol 121:47–53

    Article  PubMed  CAS  Google Scholar 

  24. Lucchini M, Romeas A, Couble ML, Bleicher F, Magloire H, Farges JC (2002) TGF beta 1 signaling and stimulation of osteoadherin in human odontoblasts in vitro. Connect Tissue Res 43:345–353

    Article  PubMed  CAS  Google Scholar 

  25. Ramstad VE, Franzen A, Heinegard D, Wendel M, Reinholt FP (2003) Ultrastructural distribution of osteoadherin in rat bone shows a pattern similar to that of bone sialoprotein. Calcif Tissue Int 72:57–64

    Article  PubMed  CAS  Google Scholar 

  26. Rehn AP, Chalk AM, Wendel M (2006) Differential regulation of osteoadherin (OSAD) by TGF-beta1 and BMP-2. Biochem Biophys Res Commun 349:1057–1064

    Article  PubMed  CAS  Google Scholar 

  27. Schonherr E, Sunderkotter C, Iozzo RV, Schaefer L (2005) Decorin, a novel player in the insulin-like growth factor system. J Biol Chem 280:15767–15772

    Article  PubMed  CAS  Google Scholar 

  28. Ferdous Z, Wei VM, Iozzo R, Hook M, Grande-Allen KJ (2007) Decorin-transforming growth factor interaction regulates matrix organization and mechanical characteristics of three-dimensional collagen matrices. J Biol Chem 282:35887–35898

    Article  PubMed  CAS  Google Scholar 

  29. Shi YF, Zhang Q, Cheung PY, Shi L, Fong CC, Zhang Y, Tzang CH, Chan BP, Fong WF, Chun J, Kung HF, Yang M (2006) Effects of rhDecorin on TGF-beta1 induced human hepatic stellate cells LX-2 activation. Biochim Biophys Acta 1760:1587–1595

    PubMed  CAS  Google Scholar 

  30. Santra M, Reed CC, Iozzo RV (2002) Decorin binds to a narrow region of the epidermal growth factor (EGF) receptor, partially overlapping but distinct from the EGF-binding epitope. J Biol Chem 277:35671–35681

    Article  PubMed  CAS  Google Scholar 

  31. Alvarado D, Rice AH, Duffy JB (2004) Knockouts of Kekkon1 define sequence elements essential for Drosophila epidermal growth factor receptor inhibition. Genetics 166:201–211

    Article  PubMed  CAS  Google Scholar 

  32. Pandiella A, Lehvaslaiho H, Magni M, Alitalo K, Meldolesi J (1989) Activation of an EGFR/neu chimeric receptor: early intracellular signals and cell proliferation responses. Oncogene 4:1299–1305

    PubMed  CAS  Google Scholar 

  33. Badalian G, Barbai T, Raso E, Derecskei K, Szendroi M, Timar J (2007) Phenotype of bone metastases of non-small cell lung cancer: epidermal growth factor receptor expression and K-RAS mutational status. Pathol Oncol Res 13:99–104

    Article  PubMed  CAS  Google Scholar 

  34. Alvarez JV, Greulich H, Sellers WR, Meyerson M, Frank DA (2006) Signal transducer and activator of transcription 3 is required for the oncogenic effects of non-small-cell lung cancer-associated mutations of the epidermal growth factor receptor. Cancer Res 66:3162–3168

    Article  PubMed  CAS  Google Scholar 

  35. Ettinger DS (2006) Clinical implications of EGFR expression in the development and progression of solid tumors: focus on non-small cell lung cancer. Oncologist 11:358–373

    Article  PubMed  CAS  Google Scholar 

  36. Gregory CA, Gunn WG, Peister A, Prockop DJ (2004) An alizarin red–based assay of mineralization by adherent cells in culture: comparison with cetylpyridinium chloride extraction. Anal Biochem 329:77–84

    Article  PubMed  CAS  Google Scholar 

  37. Wang K, Yamamoto H, Chin JR, Werb Z, Vu TH (2004) Epidermal growth factor receptor-deficient mice have delayed primary endochondral ossification because of defective osteoclast recruitment. J Biol Chem 279:53848–53856

    Article  PubMed  CAS  Google Scholar 

  38. Kumar S, Mahendra G, Ponnazhagan S (2005) Determination of osteoprogenitor-specific promoter activity in mouse mesenchymal stem cells by recombinant adeno-associated virus transduction. Biochim Biophys Acta 1731:95–103

    PubMed  CAS  Google Scholar 

  39. Buchaille R, Couble ML, Magloire H, Bleicher F (2000) A subtractive PCR-based cDNA library from human odontoblast cells: identification of novel genes expressed in tooth forming cells. Matrix Biol 19:421–430

    Article  PubMed  CAS  Google Scholar 

  40. Martin TJ, Sims NA (2005) Osteoclast-derived activity in the coupling of bone formation to resorption. Trends Mol Med 11:76–81

    Article  PubMed  CAS  Google Scholar 

  41. Ninomiya K, Miyamoto T, Imai J, Fujita N, Suzuki T, Iwasaki R, Yagi M, Watanabe S, Toyama Y, Suda T (2007) Osteoclastic activity induces osteomodulin expression in osteoblasts. Biochem Biophys Res Commun 362:460–466

    Article  PubMed  CAS  Google Scholar 

  42. Young MF (2003) Bone matrix proteins: their function, regulation, and relationship to osteoporosis. Osteoporos Int 14 Suppl 3:S35–S42

    PubMed  Google Scholar 

  43. Weiss RE, Reddi AH (1980) Synthesis and localization of fibronectin during collagenous matrix–mesenchymal cell interaction and differentiation of cartilage and bone in vivo. Proc Natl Acad Sci USA 77:2074–2078

    Article  PubMed  CAS  Google Scholar 

  44. Oldberg A, Franzen A, Heinegard D (1986) Cloning and sequence analysis of rat bone sialoprotein (osteopontin) cDNA reveals an Arg-Gly-Asp cell-binding sequence. Proc Natl Acad Sci USA 83:8819–8823

    Article  PubMed  CAS  Google Scholar 

  45. Dasch JR, Pace DR, Avis PD, Bentz H, Chu S (1993) Characterization of monoclonal antibodies recognizing bovine bone osteoglycin. Connect Tissue Res 30:11–21

    Article  PubMed  CAS  Google Scholar 

  46. Shanahan CM, Cary NR, Osbourn JK, Weissberg PL (1997) Identification of osteoglycin as a component of the vascular matrix. Differential expression by vascular smooth muscle cells during neointima formation and in atherosclerotic plaques. Arterioscler Thromb Vasc Biol 17:2437–2447

    PubMed  CAS  Google Scholar 

  47. Smiley BL, Stuart K (1990) Leucine-rich sequence in osteoinductive factor. J Bone Miner Res 5:1189–1190

    Article  PubMed  CAS  Google Scholar 

  48. Bentz H, Nathan RM, Rosen DM, Armstrong RM, Thompson AY, Segarini PR, Mathews MC, Dasch JR, Piez KA, Seyedin SM (1989) Purification and characterization of a unique osteoinductive factor from bovine bone. J Biol Chem 264:20805–20810

    PubMed  CAS  Google Scholar 

  49. Corsi A, Xu T, Chen XD, Boyde A, Liang J, Mankani M, Sommer B, Iozzo RV, Eichstetter I, Robey PG, Bianco P, Young MF (2002) Phenotypic effects of biglycan deficiency are linked to collagen fibril abnormalities, are synergized by decorin deficiency, and mimic Ehlers-Danlos-like changes in bone and other connective tissues. J Bone Miner Res 17:1180–1189

    Article  PubMed  CAS  Google Scholar 

  50. Yamaguchi Y, Mann DM, Ruoslahti E (1990) Negative regulation of transforming growth factor-beta by the proteoglycan decorin. Nature 346:281–284

    Article  PubMed  CAS  Google Scholar 

  51. Kresse H, Schonherr E (2001) Proteoglycans of the extracellular matrix and growth control. J Cell Physiol 189:266–274

    Article  PubMed  CAS  Google Scholar 

  52. Mizuno M, Imai T, Fujisawa R, Tani H, Kuboki Y (2000) Bone sialoprotein (BSP) is a crucial factor for the expression of osteoblastic phenotypes of bone marrow cells cultured on type I collagen matrix. Calcif Tissue Int 66:388–396

    Article  PubMed  CAS  Google Scholar 

  53. Ryoo HM, Hoffmann HM, Beumer T, Frenkel B, Towler DA, Stein GS, Stein JL, van Wijnen AJ, Lian JB (1997) Stage-specific expression of Dlx-5 during osteoblast differentiation: involvement in regulation of osteocalcin gene expression. Mol Endocrinol 11:1681–1694

    Article  PubMed  CAS  Google Scholar 

  54. Goldberg HA, Warner KJ, Li MC, Hunter GK (2001) Binding of bone sialoprotein, osteopontin and synthetic polypeptides to hydroxyapatite. Connect Tissue Res 42:25–37

    Article  PubMed  CAS  Google Scholar 

  55. Tasheva ES, Klocke B, Conrad GW (2004) Analysis of transcriptional regulation of the small leucine rich proteoglycans. Mol Vis 10:758–772

    PubMed  CAS  Google Scholar 

  56. Tu Q, Yamauchi M, Pageau SC, Chen JJ (2004) Autoregulation of bone sialoprotein gene in pre-osteoblastic and non-osteoblastic cells. Biochem Biophys Res Commun 316:461–467

    Article  PubMed  CAS  Google Scholar 

  57. Whyte MP (1994) Hypophosphatasia and the role of alkaline phosphatase in skeletal mineralization. Endocr Rev 15:439–461

    Article  PubMed  CAS  Google Scholar 

  58. Gordon JA, Tye CE, Sampaio AV, Underhill TM, Hunter GK, Goldberg HA (2007) Bone sialoprotein expression enhances osteoblast differentiation and matrix mineralization in vitro. Bone 41:462–473

    Article  PubMed  CAS  Google Scholar 

  59. Kobe B, Kajava AV (2001) The leucine-rich repeat as a protein recognition motif. Curr Opin Struct Biol 11:725–732

    Article  PubMed  CAS  Google Scholar 

  60. Bruell D, Bruns CJ, Yezhelyev M, Huhn M, Muller J, Ischenko I, Fischer R, Finnern R, Jauch KW, Barth S (2005) Recombinant anti-EGFR immunotoxin 425(scFv)-ETA’ demonstrates anti-tumor activity against disseminated human pancreatic cancer in nude mice. Int J Mol Med 15:305–313

    PubMed  CAS  Google Scholar 

  61. Yano S, Yamaguchi M, Dong RP (2003) EGFR tyrosine kinase inhibitor “gefitinib (Iressa)” for cancer therapy. Nippon Yakurigaku Zasshi 122:491–497

    PubMed  CAS  Google Scholar 

  62. Hausser H, Schonherr E, Muller M, Liszio C, Bin Z, Fisher LW, Kresse H (1998) Receptor-mediated endocytosis of decorin: involvement of leucine-rich repeat structures. Arch Biochem Biophys 349:363–370

    Article  PubMed  CAS  Google Scholar 

  63. Feugaing DD, Tammi R, Echtermeyer FG, Stenmark H, Kresse H, Smollich M, Schonherr E, Kiesel L, Gotte M (2007) Endocytosis of the dermatan sulfate proteoglycan decorin utilizes multiple pathways and is modulated by epidermal growth factor receptor signaling. Biochimie 89:637–657

    Article  PubMed  CAS  Google Scholar 

  64. Douglas T, Hempel U, Mietrach C, Viola M, Vigetti D, Heinemann S, Bierbaum S, Scharnweber D, Worch H (2008) Influence of collagen-fibril-based coatings containing decorin and biglycan on osteoblast behavior. J Biomed Mater Res A 84A:805–816

    Article  CAS  Google Scholar 

  65. Ameye L, Aria D, Jepsen K, Oldberg A, Xu T, Young MF (2002) Abnormal collagen fibrils in tendons of biglycan/fibromodulin-deficient mice lead to gait impairment, ectopic ossification, and osteoarthritis. FASEB J 16:673–680

    Article  PubMed  CAS  Google Scholar 

  66. Tsiridis E, Upadhyay N, Giannoudis P (2007) Molecular aspects of fracture healing: which are the important molecules? Injury 38 Suppl 1:S11–S25

    Article  PubMed  Google Scholar 

  67. Kinsella MG, Fischer JW, Mason DP, Wight TN (2000) Retrovirally mediated expression of decorin by macrovascular endothelial cells. Effects on cellular migration and fibronectin fibrillogenesis in vitro. J Biol Chem 275:13924–13932

    Article  PubMed  CAS  Google Scholar 

  68. Shimizu-Hirota R, Sasamura H, Kuroda M, Kobayashi E, Hayashi M, Saruta T (2004) Extracellular matrix glycoprotein biglycan enhances vascular smooth muscle cell proliferation and migration. Circ Res 94:1067–1074

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

The study was funded by grants from the Stockholm County Council and research funds of the Karolinska Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anders P. Rehn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rehn, A.P., Cerny, R., Sugars, R.V. et al. Osteoadherin is Upregulated by Mature Osteoblasts and Enhances Their In Vitro Differentiation and Mineralization. Calcif Tissue Int 82, 454–464 (2008). https://doi.org/10.1007/s00223-008-9138-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-008-9138-1

Keywords

Navigation