Skip to main content

Advertisement

Log in

Abnormal Mineral-Matrix Interactions Are a Significant Contributor to Fragility in oim/oim Bone

  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

The presence of abnormal type I collagen underlies the tissue fragility in the heritable disease osteogenesis imperfecta (OI), though the specific mechanism remains ill-defined. The current study addressed the question of how an abnormal collagen-based matrix contributes to reduced bone strength in OI by comparing the material properties of mineralized and demineralized bone from the oim/oim mouse, a model of OI that contains homotrimeric (α13(I)) type I collagen, with the properties of bone from wildtype (+/+) mice. Femoral three-point bend tests combined with geometric analyses were conducted on intact (mineralized) 14-week-old oim/oim and +/+ mice. To investigate the bone matrix properties, tensile tests combined with geometric analyses were conducted on demineralized femora. The majority of the properties of the mineralized oim/oim bone were inferior to those of the +/+ bone, including greater brittleness (+78.6%) and lower toughness (–69.2%). In contrast, tensile measurements on the demineralized bone revealed no significant differences between the oim/oim and +/+ bone, indicating that the matrix itself was not brittle. These results support the concept that deficient material properties of the demineralized bone matrix itself are not the principal cause of the severe fragility in this model of OI. It is likely the abnormal collagen scaffold serves as a template for abnormal mineral deposition, resulting in an incompetent mineral-matrix interaction that contributes significantly to the inferior material properties of bone in oim/oim mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Rowe DS Jr (1998) Osteogenesis imperfecta. In: Avioli LK, Krane SM; (eds) Metabolic bone disease and clinically related disorders. Academic Press, San Diego

  2. Bachinger HP, Morris NP, Davis JM (1993) Thermal stability and folding of the collagen triple helix and the effects of mutations in osteogenesis imperfecta on the triple helix of type I collagen. Am J Med Genet 45:152–162

    Article  PubMed  CAS  Google Scholar 

  3. Bella J, Eaton M, Brodsky B, Berman HM (1994) Crystal and molecular structure of a collagen-like peptide at 1.9 Å resolution. Science 266:75–81

    Article  PubMed  CAS  Google Scholar 

  4. Mietz H, Kasner L, Green WR (1997) Histopathologic and electron-microscopic features of corneal and scleral collagen fibers in osteogenesis imperfecta type III. Graefes Arch Clin Exp Ophthalmol 235:405–410

    Article  PubMed  CAS  Google Scholar 

  5. Raghunath M, Bruckner P, Steinmann B (1994) Delayed triple helix formation of mutant collagen from patients with osteogenesis imperfecta. J Mol Biol 236:940–949

    Article  PubMed  CAS  Google Scholar 

  6. Stoss H, Freisinger P (1993) Collagen fibrils of osteoid in osteogenesis imperfecta: Morphometrical analysis of the fibril diameter. Am J Med Genet 45:257

    Article  PubMed  CAS  Google Scholar 

  7. Beck K, Chan VC, Shenoy N, Kirkpatrick A, Ramshaw JA, Brodsky B (2000) Destabilization of osteogenesis imperfecta collagen-like model peptides correlates with the identity of the residue replacing glycine. Proc Natl Acad Sci USA 97:4273–4278

    Article  PubMed  CAS  Google Scholar 

  8. Zionts LE, Nash JP, Rude R, Ross T, Stott NS (1995) Bone mineral density in children with mild osteogenesis imperfecta. J Bone Joint Surg Br 77:143–147

    PubMed  CAS  Google Scholar 

  9. Boyde A, Travers R, Glorieux FH, Jones SJ (1999) The mineralization density of iliac crest bone from children with osteogenesis imperfecta. Calcif Tissue Int 64:185–190

    Article  PubMed  CAS  Google Scholar 

  10. Cepollaro C, Gonnelli S, Pondrelli C, Montagnani A, Martini S, Bruni D, Gennari C (1999) Osteogenesis imperfecta: Bone turnover, bone density, and ultrasound parameters. Calcif Tissue Int 65:129–132

    Article  PubMed  CAS  Google Scholar 

  11. Antoniazzi F, Bertoldo F, Mottes M, Valli M, Sirpresi S, Zamboni G, Valentini R, Tato L (1996) Growth hormone treatment in osteogenesis imperfecta with quantitative defect of type I collagen synthesis. J Pediatr 129:432–439

    Article  PubMed  CAS  Google Scholar 

  12. Rajtar M, Laszlo A, Beviz J, Bossanyi A, Almasi L, Csernay L (1996) [Bone mineral content in osteogenesis imperfecta]. Orv Hetil 137:1519–1523

    PubMed  CAS  Google Scholar 

  13. Vetter U, Eanes ED, Kopp JB, Termine JD, Robey PG (1991) Changes in apatite crystal size in bones of patients with osteogenesis imperfecta. Calcif Tissue Int 49:248–250

    Article  PubMed  CAS  Google Scholar 

  14. Sarathchandra P, Kayser MV, Ali SY (1999) Abnormal mineral composition of osteogenesis imperfecta bone as determined by electron probe X-ray microanalysis on conventional and cryosections. Calcif Tissue Int 65:11–15

    Article  PubMed  CAS  Google Scholar 

  15. Chipman SD, Sweet HO, McBride DJ Jr, Davisson MT, Marks SC Jr, Shuldiner AR, Wenstrup RJ, Rowe DW, Shapiro JR (1993) Defective pro alpha 2(I) collagen synthesis in a recessive mutation in mice: A model of human osteogenesis imperfecta. Proc Natl Acad Sci USA 90:1701–1705

    Article  PubMed  CAS  Google Scholar 

  16. Phillips CL, Bradley DA, Schlotzhauer CL, Bergfeld M, Libreros-Minotta C, Gawenis LR, Morris JS, Clarke LL, Hillman LS (2000) Oim mice exhibit altered femur and incisor mineral composition and decreased bone mineral density. Bone 27:219–226

    Article  PubMed  CAS  Google Scholar 

  17. Camacho NP, Hou L, Toledano TR, Ilg WA, Brayton CF, Raggio CL, Root L, Boskey AL (1999) The material basis for reduced mechanical properties in oim mice bones. J Bone Miner Res 14:264–272

    Article  PubMed  CAS  Google Scholar 

  18. Fratzl P, Paris O, Klaushofer K, Landis WJ (1996) Bone mineralization in an osteogenesis imperfecta mouse model studied by small-angle x-ray scattering. J Clin Invest 97:396–402

    PubMed  CAS  Google Scholar 

  19. Landis WJ (1995) The strength of a calcified tissue depends in part on the molecular structure and organization of its constituent mineral crystals in their organic matrix. Bone 16:533–544

    Article  PubMed  CAS  Google Scholar 

  20. McBride DJ Jr, Shapiro JR, Dunn MG (1998) Bone geometry and strength measurements in aging mice with the oim mutation. Calcif Tissue Int 62:172–176

    Article  PubMed  CAS  Google Scholar 

  21. McCarthy EA, Raggio CL, Hossack MD, Miller EA, Jain S, Boskey AL, Camacho NP (2002) Alendronate treatment for infants with osteogenesis imperfecta: Demonstration of efficacy in a mouse model. Pediatr Res 52:660–670

    PubMed  CAS  Google Scholar 

  22. Misof BM, Roschger P, Baldini T, Raggio CL, Zraick V, Root L, Boskey AL, Klaushofer K, Fratzl P, Camacho NP (2005) Differential effects of alendronate treatment on bone from growing osteogenesis imperfecta and wild-type mouse. Bone 36:150–158

    Article  PubMed  CAS  Google Scholar 

  23. Camacho NP, Dow D, Toledano TR, Buckmeyer JK, Gertner JM, Brayton CF, Raggio CL, Root L, Boskey AL (1998) Identification of the oim mutation by dye terminator chemistry combined with automated direct DNA sequencing. J Orthop Res 16:38–42

    Article  PubMed  CAS  Google Scholar 

  24. Turner CH, Burr DB (1993) Basic biomechanical measurements of bone: A tutorial. Bone 14:595–608

    Article  PubMed  CAS  Google Scholar 

  25. Huang AH RCL, Fritton JC, Camacho NP (2005) Comparison of radiographic and micro CT-determined parameters in mouse bone specimens. In: 51st Orthopaedic Research Society Meeting. Washington, DC, p 713

  26. van der Meulen MC, Jepsen KJ, Mikic B (2001) Understanding bone strength: Size isn’t everything. Bone 29:101–104

    Article  PubMed  Google Scholar 

  27. Jonas J, Burns J, Abel EW, Cresswell MJ, Strain JJ, Paterson CR (1993) A technique for the tensile testing of demineralised bone. J Biomech 26:271–276

    Article  PubMed  CAS  Google Scholar 

  28. Willis JB (1960) Determination of calcium in blood serum by atomic absorption spectroscopy. Nature 186:249–250

    Article  PubMed  CAS  Google Scholar 

  29. Shah KM, Goh JC, Karunanithy R, Low SL, Das De S, Bose K (1995) Effect of decalcification on bone mineral content and bending strength of feline femur. Calcif Tissue Int 56:78–82

    Article  PubMed  CAS  Google Scholar 

  30. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  31. Misof K, Landis WJ, Klaushofer K, Fratzl P (1997) Collagen from the osteogenesis imperfecta mouse model (oim) shows reduced resistance against tensile stress. J Clin Invest 100:40–45

    Article  PubMed  CAS  Google Scholar 

  32. Pfeiffer BJ, Franklin CL, Hsieh FH, Bank RA, Phillips CL (2005) Alpha 2(I) collagen deficient oim mice have altered biomechanical integrity, collagen content, and collagen crosslinking of their thoracic aorta. Matrix Biol 24:451–458

    Article  PubMed  CAS  Google Scholar 

  33. Silva MJ, Brodt MD, Wopenka B, Thomopoulos S, Williams D, Wassen MH, Ko M, Kusano N, Bank RA (2006) Decreased collagen organization and content are associated with reduced strength of demineralized and intact bone in the SAMP6 mouse. J Bone Miner Res 21:78–88

    Article  PubMed  Google Scholar 

  34. Sims TJ, Miles CA, Bailey AJ, Camacho NP (2003) Properties of collagen in OIM mouse tissues. Connect Tissue Res 44 (Suppl 1):202–205

    Article  PubMed  CAS  Google Scholar 

  35. Burstein AH, Zika JM, Heiple KG, Klein L (1975) Contribution of collagen and mineral to the elastic-plastic properties of bone. J Bone Joint Surg Am 57:956–961

    PubMed  CAS  Google Scholar 

  36. Jepsen K, Mansoura MK, Kuhn JL, et al. (1992) An in vivo assessment of the contribution of type I collagen to the mechanical properties of cortical bone. Trans Orthop Res Soc 17:93

    Google Scholar 

  37. Camacho NP, Landis WJ, Boskey AL (1996) Mineral changes in a mouse model of osteogenesis imperfecta detected by Fourier transform infrared microscopy. Connect Tissue Res 35:259–265

    PubMed  CAS  Google Scholar 

  38. Jepsen KJ, Goldstein SA, Kuhn JL, Schaffler MB, Bonadio J (1996) Type-I collagen mutation compromises the post-yield behavior of Mov13 long bone. J Orthop Res 14:493–499

    Article  PubMed  CAS  Google Scholar 

  39. Mehta SS, Antich PP, Landis WJ (1999) Bone material elasticity in a murine model of osteogenesis imperfecta. Connect Tissue Res 40:189–198

    PubMed  CAS  Google Scholar 

  40. Currey JD (1984) Effects of differences in mineralization on the mechanical properties of bone. Phil Trans R Soc Lond B Biol Sci 304:509–518

    Article  CAS  Google Scholar 

  41. Currey JD (1969) The mechanical consequences of variation in the mineral content of bone. J Biomech 2:1–11

    Article  PubMed  CAS  Google Scholar 

  42. Boskey AL, Gilder H, Neufeld E, Ecarot B, Glorieux FH (1991) Phospholipid changes in the bones of the hypophosphatemic mouse. Bone 12:345–351

    Article  PubMed  CAS  Google Scholar 

  43. Boskey AL, Rimnac CM, Bansal M, Federman M, Lian J, Boyan BD (1992) Effect of short-term hypomagnesemia on the chemical and mechanical properties of rat bone. J Orthop Res 10:774–783

    Article  PubMed  CAS  Google Scholar 

  44. Walsh WR, Guzelsu N (1993) The role of ions and mineral-organic interfacial bonding on the compressive properties of cortical bone. Biomed Mater Eng 3:75–84

    PubMed  CAS  Google Scholar 

  45. Walsh WR, Guzelsu N (1994) Compressive properties of cortical bone: mineral-organic interfacial bonding. Biomaterials 15:137–145

    Article  PubMed  CAS  Google Scholar 

  46. Bundy KJ (1985) Determination of mineral-organic bonding effectiveness in bone: Theoretical considerations. Ann Biomed Eng 13:119–135

    Article  PubMed  CAS  Google Scholar 

  47. Miles CA, Sims TJ, Camacho NP, Bailey AJ (2002) The role of the alpha2 chain in the stabilization of the collagen type I heterotrimer: A study of the type I homotrimer in oim mouse tissues. J Mol Biol 321:797–805

    Article  PubMed  CAS  Google Scholar 

  48. Wang X, Li X, Bank RA, Agrawal CM (2002) Effects of collagen unwinding and cleavage on the mechanical integrity of the collagen network in bone. Calcif Tissue Int 71:186–192

    Article  PubMed  CAS  Google Scholar 

  49. Catanese J, 3rd, Iverson EP, Ng RK, Keaveny TM (1999) Heterogeneity of the mechanical properties of demineralized bone. J Biomech 32:1365–1369

    Article  PubMed  Google Scholar 

  50. Schriefer JL, Robling AG, Warden SJ, Fournier AJ, Mason JJ, Turner CH (2005) A comparison of mechanical properties derived from multiple skeletal sites in mice. J Biomech 38:467–475

    Article  PubMed  Google Scholar 

  51. Reilly DT, Burstein AH (1975) The elastic and ultimate properties of compact bone tissue. J Biomech 8:393–405

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by NIH DE11803 and AR48337 (NPC), and utilized the facilities of the Core Center for Skeletal Integrity NIH AR46121.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nancy Pleshko Camacho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miller, E., Delos, D., Baldini, T. et al. Abnormal Mineral-Matrix Interactions Are a Significant Contributor to Fragility in oim/oim Bone. Calcif Tissue Int 81, 206–214 (2007). https://doi.org/10.1007/s00223-007-9045-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-007-9045-x

Keywords

Navigation