Skip to main content

Advertisement

Log in

Conversion of Immunosuppressive Monotherapy from Cyclosporin A to Tacrolimus Reverses Bone Loss in Rats

  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Tacrolimus is used for transplant patients with refractory graft rejection and those with intolerance to cyclosporin (CsA), without the disfiguring adverse effects frequently attributed to CsA therapy. Since we have shown that CsA-associated bone loss can also affect alveolar bone, the purpose of this study was to evaluate the effects of conversion of monotherapy from CsA to tacrolimus on alveolar bone loss in rats. Groups of rats were treated with either CsA (10 mg/kg/day, s.c.), tacrolimus (1 mg/kg/day, s.c.), or drug vehicle for 60 and 120 days, and an additional group received CsA for 60 days followed by conversion to tacrolimus for a further 60-day period. Bone-specific alkaline phosphatase (BALP), tartrate-resistent acid phosphatase (TRAP-5b), calcium (Ca2+), interleukin (IL)-1β, IL-6, and tumor necrosis factor α (TNF-α) concentrations were evaluated in the serum. Analyses of bone volume, bone surface, number of osteblasts, and osteoclasts were performed. Treatment with CsA for either 60 or 120 days was associated with bone resorption, represented by lower bone volume and increased number of osteoclasts; serum BALP, TRAP-5b, IL-1β, IL-6, and TNF-α were also higher in these animals. After conversion from CsA to tacrolimus, all the altered serum markers returned to control values in addition to a significant increase of bone volume and a lower number of osteoclasts. This study shows that conversion from CsA to tacrolimus therapy leads to a reversal of the CsA-induced bone loss, which can probably be mediated by downregulation of IL-1β, IL-6, and TNF-α production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Asberg A (2003) Interactions between cyclosporin and lipid-lowering drugs. Drugs 63:367–378

    Article  PubMed  CAS  Google Scholar 

  2. Segal E, Tamir A, Ish-Shalom S (2003) Compliance of osteoporotic patients with different treatment regimens. Isr Med Assoc J 5:859–862

    PubMed  Google Scholar 

  3. Cohen A, Shane E (2003) Osteoporosis after solid organ and bone marrow transplantation. Osteoporos Int 14:617–630

    Article  PubMed  Google Scholar 

  4. Loertscher R, Thiel G, Harder F, Brunner FP (1983) Persistent elevation of alkaline phosphatase in cyclosporine-treated renal transplant recipients. Transplantation 36:115–116

    Article  PubMed  CAS  Google Scholar 

  5. Sambrook PN, Kelly PJ, Fontana D, Nguyen T, Keogh A, Macdonald P, Spratt P, Freund J, Eisman JA (1994) Mechanisms of rapid bone loss following cardiac transplantation. Osteoporos Int 4:273–276

    Article  PubMed  CAS  Google Scholar 

  6. Thiebaud D, Krieg MA, Gillard-Berguer D, Jacquet AF, Goy JJ, Burckhardt P (1996) Cyclosporine induces high bone turnover and may contribute to bone loss after heart transplantation. Eur J Clin Invest 26:549–555

    Article  PubMed  CAS  Google Scholar 

  7. Ebeling PR, Thomas DM, Erbas B, Hopper JL, Szer J, Grigg AP (1999) Mechanisms of bone loss following allogeneic and autologous hemopoietic stem cell transplantation. J Bone Miner Res 14:342–350

    Article  PubMed  CAS  Google Scholar 

  8. Goodman GR, Dissanayake IR, Bowman AR, Pun S, Ma Y, Jee WS, Bryer HP, Epstein S (2001) Transforming growth factor-beta administration modifies cyclosporin A-induced bone loss. Bone 28:583–588

    Article  PubMed  CAS  Google Scholar 

  9. Mathier MA, McNamara DM (2004) Management of the patient after heart transplant. Curr Treat Options Cardiovasc Med 6:459–469

    Article  PubMed  Google Scholar 

  10. Spolidorio LC, Spolidorio DMP, Nassar PO, Nassar CA, Holzhausen M, Almeida OP (2004) Influence of age on combined effects of cyclosporin and nifedipine on rat alveolar bone. J Periodontol 75:268–272

    Article  PubMed  CAS  Google Scholar 

  11. Movsowitz C, Epstein S, Fallon M, Ismail F, Thomas S (1988) Cyclosporin-A in vivo produces severe osteopenia in the rat: effect of dose and duration of administration. Endocrinology 123:2571–2577

    PubMed  CAS  Google Scholar 

  12. Epstein S, Schlosberg M, Fallon M, Thomas S, Movsowitz C, Ismail F (1990) 1,25 Dihydroxyvitamin D3 modifies cyclosporine-induced bone loss. Calcif Tissue Int 47:152–157

    Article  PubMed  CAS  Google Scholar 

  13. Spolidorio LC, Marcantonio E Jr, Spolidorio DM, Nassar OP, Marcantonio RA, Rossa C Jr (2007) Alendronate therapy in cyclosporin-induced alveolar bone loss in rat. J Periodontal Res (in press)

  14. Duarte PM, Nogueira Filho GR, Sallum EA, de Toledo S, Sallum AW, Nociti FH Jr (2001) The effect of an immunosuppressive therapy and its withdrawal on bone healing around titanium implants. A histometric study in rabbits. J Periodontol 72:1391–1397

    Article  PubMed  CAS  Google Scholar 

  15. Silva HC, Coletta RD, Jorge J, Bolzani G, de Almeida OP, Graner E (2001) The effect of cyclosporin A on the activity of matrix metalloproteinases during the healing of rat molar extraction wounds. Arch Oral Biol 46:875–879

    Article  PubMed  CAS  Google Scholar 

  16. Gau CH, Hsieh YD, Shen EC, Lee S, Chiang CY, Fu E (2005) Healing following tooth extraction in cyclosporine-fed rats. Int J Oral Maxillofac Surg 34:782–788

    Article  PubMed  Google Scholar 

  17. Marshall I (1995) Expression of interleukin-1 and interleukin-6 in bone normal and cyclosporin A treated rats. The XII International Conference on Calcium Regulating Hormones, Melbourne, Australia. Bone, vol 17, pp S12–S13

  18. Lee WY, Baek KH, Rhee EJ, Tae HJ, Oh KW, Kang MI, Lee KW, Kim SW, Kim CC, Oh ES (2004) Impact of circulating bone-resorbing cytokines on the subsequent bone loss following bone marrow transplantation. Bone Marrow Transplant 34:89–94

    Article  PubMed  CAS  Google Scholar 

  19. Spencer CM, Goa KL, Gillis JC (1997) Tacrolimus: an update of its pharmacology and clinical efficacy in the management of organ transplantation. Drugs 54:925–975

    PubMed  CAS  Google Scholar 

  20. Rinaldi M, Pellegrini C, Martinelli L, Goggi C, Gavazzi A, Campana C, Arbustini E, Grossi P, Regazzi M, Ippoliti G, Vigano M (1997) FK506 effectiveness in reducing acute rejection after heart transplantation: a prospective randomized study. J Heart Lung Transplant 16:1001

    PubMed  CAS  Google Scholar 

  21. Morris-Stiff G, Khan A, Quiroga I, Baboo R, Jurewicz WA (1999) Immunosuppression in renal transplantation. Meta-analysis should not have included one of the studies. BMJ 23:1136

    Google Scholar 

  22. Mentzer RM Jr, Jahania MS, Lasley RD (1998) Tacrolimus as a rescue immunosuppressant after heart and lung transplantation. The U.S. Multicenter FK506 Study Group. Transplantation 65:109–113

    Article  PubMed  CAS  Google Scholar 

  23. Asante-Korang A, Boyle GJ, Webber SA, Miller SA, Fricker FJ (1996) Experience of FK506 immune suppression in pediatric heart transplantation: a study of long-term adverse effects. J Heart Lung Transplant 15:415–422

    PubMed  CAS  Google Scholar 

  24. Swensen SJ, Morin RL, Aughenbaugh GL, Leimer DW (1995) CT reconstruction algorithm selection in the evaluation of solitary pulmonary nodules. J Comput Assist Tomogr 19:932–935

    Article  PubMed  CAS  Google Scholar 

  25. Cvetkovic M, Mann GN, Romero DF, Liang XG, Ma Y, Jee WS, Epstein S (1994) The deleterious effects of long-term cyclosporine A, cyclosporine G, and FK506 on bone mineral metabolism in vivo. Transplantation 57:1231–1237

    Article  PubMed  CAS  Google Scholar 

  26. Katz IA, Takizawa M, Joffe II, Stein B, Fallon MD, Epstein S (1991) Comparison of the effects of tacrolimus and cyclosporin on bone mineral metabolism in the rat. A pilot study. Transplantation 52:571–574

    Article  PubMed  CAS  Google Scholar 

  27. Stempfle HU, Werner C, Siebert U, Assum T, Wehr U, Rambeck WA, Meiser B, Theisen K, Gartner R (2002) The role of tacrolimus (FK506)-based immunosuppression on bone mineral density and bone turnover after cardiac transplantation: a prospective, longitudinal, randomized, double-blind trial with calcitriol. Transplantation 73:547–552

    Article  PubMed  CAS  Google Scholar 

  28. Inoue T, Kawamura I, Matsuo M, Aketa M, Mabuchi M, Seki J, Goto T (2000) Lesser reduction in bone mineral density by the immunosuppressant, FK506, compared with cyclosporine in rats. Transplantation 70:774–779

    Article  PubMed  CAS  Google Scholar 

  29. Goffin E, Devogelaer JP, Lalaoui A, Depresseux G, De Naeyer P, Squifflet JP, Pirson Y, van Ypersele de Strihou C (2002) Tacrolimus (FK506) and low-dose steroid immunosupression preserves bone mass after renal transplantation. Transpl Int 15:73–80

    Article  PubMed  CAS  Google Scholar 

  30. Monegal A, Navasa M, Guanabens N (2001) Bone mass and mineral metabolism in liver transplant patients treated with FK506 or cyclosporine A. Calcif Tissue Int 68:83–86

    Article  PubMed  CAS  Google Scholar 

  31. Scolapio JS, DeArment J, Hurley DL, Romano M, Harnois D, Weigand SD (2003) Influence of tacrolimus and short-duration prednisone on bone mineral density following liver transplantation. J Parenter Enteral Nutr 27:427–432

    Article  CAS  Google Scholar 

  32. Josephson MA, Schumm LP, Chiu MY, Marshall C, Thistlethwaite JR, Sprague SM (2004) Calcium and calcitriol prophylaxis attenuates posttransplant bone loss. Transplantation 78:1233–1236

    Article  PubMed  CAS  Google Scholar 

  33. Guimarães MR, Nassar PO, Nassar CA, Spolidorio DMP, Rossa C Jr, Spolidorio LC (2007) protective effects of tacrolimus, a calcineurin inhibitor, in experimental periodontitis in rats. Arch Oral Biol (in press)

  34. Wassef R, Cohen Z, Langer B (1985) Pharmacokinetic profiles of cyclosporine in rats. Influence of route of administration and dosage. Transplantation 40:489–493

    Article  PubMed  CAS  Google Scholar 

  35. Nassar CA, Spolidorio LC (2004) Effect of cyclosporin A on alveolar bone homeostasis in a rat periodontitis model. J Periodontal Res 39:143–148

    Article  PubMed  CAS  Google Scholar 

  36. Spolidorio LC, Holzhausen M, Spolidorio DM, Nassar CA, Nassar PO, Muscara MN (2005) Cyclosporin but not tacrolimus significantly increases salivary cytokine contents in rats. J Periodontol 76:1520–1525

    Article  PubMed  CAS  Google Scholar 

  37. Baldock PA, Morris HA, Need AG, Moore RJ, Durbridge TC (1998) Variation in the short-term changes in bone cell activity in three regions of the distal femur immediately following ovariectomy. J Bone Miner Res 13:1451–1457

    Article  PubMed  CAS  Google Scholar 

  38. Wada C, Kataoka M, Seto H, Hayashi N, Kido J, Shinohara Y, Nagata T (2006) High- turnover osteoporosis is induced by cyclosporin A in rats. J Bone Miner Metab 24:199–205

    Article  PubMed  CAS  Google Scholar 

  39. Ogawa K, Hori M, Tako R, Sakurada T (2005) Effects of combined elcatonin and alendronate treatment on the architecture and strength of bone in ovariectomized rats. J Bone Miner Metab 23:351–358

    Article  PubMed  CAS  Google Scholar 

  40. Parfitt AM (1998) Bone histomorphometry: standardization of nomenclature, symbols and units (summary of proposed system). Bone 9:67–69

    Article  Google Scholar 

  41. Rodino MA, Shane E (1998) Osteoporosis after organ transplantation. Am J Med 104:459–469

    Article  PubMed  CAS  Google Scholar 

  42. Abdelhadi M, Ericzon BG, Hultenby K, Sjoden G, Reinholt FP, Nordenstrom J (2002) Structural skeletal impairment induced by immunosuppressive therapy in rats: cyclosporine A vs tacrolimus. Transpl Int 15:180–187

    Article  PubMed  CAS  Google Scholar 

  43. Kataoka M, Shimizu Y, Kunikiyo K, Asahara Y, Yamashita K, Ninomiya M, Morisaki I, Ohsaki Y, Kido JI, Nagata T (2000) Cyclosporin A decreases the degradation of type I collagen in rat gingival overgrowth. J Cell Physiol 182:351–358

    Article  PubMed  CAS  Google Scholar 

  44. Schlosberg M, Movsowitz C, Epstein S, Ismail F, Fallon MD, Thomas S (1989) The effect of cyclosporin A administration and its withdrawal on bone mineral metabolism in the rat. Endocrinology 124:2179–2184

    Article  PubMed  CAS  Google Scholar 

  45. Rucinski B, Liu CC, Epstein S (1994) Utilization of cyclosporine H to elucidate the possible mechanisms of cyclosporine A-induced osteopenia in the rat. Metabolism 43:1114–1118

    Article  PubMed  CAS  Google Scholar 

  46. Katz I, Li M, Joffe I, Stein B, Jacobs T, Liang XG, Ke HZ, Jee W, Epstein S (2000) Influence of age on cyclosporin-A induced alterations in bone mineral metabolism in the rat “in vivo.” J Bone Miner Res 9:9–67

    Google Scholar 

  47. Rolla D, Ballanti P, Marsano L, Bianchi G, Messa P, Paoletti E, Cannella G (2006) Bone disease in long-term renal transplant recipients with severe osteopenia: a cross-sectional study. Transplantation 81:915–921

    Google Scholar 

  48. Ott R, Bussenius-Kammerer M, Koch CA, Yedibela S, Kissler H, Hohenberger W, Muller V (2003) Does conversion of immunosuppressive monotherapy from cyclosporine A to tacrolimus improve bone mineral density in long-term stable liver transplant recipients? Transplant Proc 35:3032–3034

    Article  PubMed  CAS  Google Scholar 

  49. Akahane M, Ohgushi H, Yoshikawa T, Sempuku T, Tamai S, Tabata S, Dohi Y (1999) Osteogenic phenotype expression of allogeneic rat marrow cells in porous hydroxyapatite ceramics. J Bone Miner Res 14:561–568

    Article  PubMed  CAS  Google Scholar 

  50. Bjoro K, Brandsaeter B, Wiencke K, Bjoro T, Godang K, Bollerslev J, Schrumpf E (2003) Secondary osteoporosis in liver transplant recipients: a longitudinal study in patients with and without cholestatic liver disease. Scand J Gastroenterol 38:320–327

    PubMed  CAS  Google Scholar 

  51. Schmidt CM, Orr HT (1995) HLA-G transgenic mice: a model for studying expression and function at the maternal/fetal interface. Immunol Rev 147:53–65

    Article  PubMed  CAS  Google Scholar 

  52. Delmas PD (1993) Biochemical markers of bone turnover. J Bone Miner Res 82:S549–S555

    Google Scholar 

  53. Zeni SN, Gregorio S, Gomez AC, Somoza J, Mautalen C (2002) Olpadronate prevents the bone loss induced by cyclosporine in the rat. Calcif Tissue Int 70:48–53

    Article  PubMed  CAS  Google Scholar 

  54. Ryffel B (1986) Cyclosporin toxicology – experimental studies. Prog Allergy 38:181–197

    PubMed  CAS  Google Scholar 

  55. Mason J (1990) Renal side-effects of cyclosporin A. Br J Dermatol 36:71–77

    Article  Google Scholar 

  56. Buchinsky FJ, Ma Y, Mann GN, Rucinski B, Bryer HP, Paynton BV, Jee WS, Hendy GN, Epstein S (1995) Bone mineral metabolism in T lymphocyte-deficient and -replete strains of rat. J Bone Miner Res 10:1556–1565

    Article  PubMed  CAS  Google Scholar 

  57. Yeo H, McDonald JM, Zayzafoon M (2006) NFATc1: a novel anabolic therapeutic target for osteoporosis. Ann N Y Acad Sci 1068:564–567

    Article  PubMed  CAS  Google Scholar 

  58. Takayanagi H, Kim S, Koga T, Nishina H, Isshiki M, Yoshida H, Saiura A, Isobe M, Yokochi T, Inoue J, Wagner EF, Mak TW, Kodama T, Taniguchi T (2002) Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev Cell 3:889–901

    Article  PubMed  CAS  Google Scholar 

  59. Koga T, Matsui Y, Asagiri M, Kodama T, de Crombrugghe B, Nakashima K, Takayanagi H (2005) NFAT and osterix cooperatively regulate bone formation. Nat Med 11:880–885

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luís C. Spolidorio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spolidorio, L.C., Nassar, P.O., Nassar, C.A. et al. Conversion of Immunosuppressive Monotherapy from Cyclosporin A to Tacrolimus Reverses Bone Loss in Rats. Calcif Tissue Int 81, 114–123 (2007). https://doi.org/10.1007/s00223-007-9040-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-007-9040-2

Keywords

Navigation