Skip to main content

Advertisement

Log in

Dentin Alteration of Deciduous Teeth in Human Hypophosphatemic Rickets

  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Familial hypophosphatemic rickets is in most cases transmitted as an X-linked dominant trait and results from mutation of the PHEX gene, predominantly expressed in osteoblast and odontoblast. Patients have been reported to display important dentin defects, and therefore, we explored the dentin structure, composition, and distribution of extracellular matrix (ECM) molecules in hypophosphatemic human deciduous teeth. Compared to age-matched controls, the dentin from hypophosphatemic patients exhibited major differences: presence of large interglobular spaces resulting from the lack of fusion of calcospherites in the circumpulpal dentin; defective mineralization in the interglobular spaces contrasting with normal Ca-P levels in the calcospherites on X-ray microanalysis; abnormal presence of low-molecular weight protein complexes recognized on Western blots by antibodies against matrix extracellular phosphoglycoprotein (MEPE), dentin sialoprotein, osteopontin, and reduced osteocalcin (OC) level; and accumulation in the interglobular spaces of immunolabeling with antibodies against DSP, dentin matrix protein, bone sialoprotein, MEPE and OC, while chondroitin/dermatan sulfate glycosaminoglycans were exclusively located inside calcospherites. Alterations of the post-translational processing or partial degradation of some ECM appear as key factors in the formation of the defective hypophosphatemic dentin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  1. HYP Consortium (1995) A gene (PHEX) with homologies to endopeptidases is mutated in patients with X-linked hypophosphatemic rickets. Nat Genet 11:130–136

    Article  Google Scholar 

  2. Rowe PSN, Oudet CL, Francis F, Sinding C, Pannetier S, Econs J, et al. (1997) Distribution of mutations in the Phex gene in families with X-linked hypophosphatemic rickets (HYP). Hum Mol Genet 6:539–549

    Article  PubMed  CAS  Google Scholar 

  3. Shellis RP (1983) Structural organization of calcospherites in normal and rachitic human dentine. Arch Oral Biol 28:85–95

    Article  PubMed  CAS  Google Scholar 

  4. Murayama T, Iwatsubo R, Akiyama S, Amato A, Morisaki I (2000) Familial hypophosphatemic vitamin D-resistant rickets: dental findings and histologic study of teeth. Oral Surg Oral Med Pathol Oral Radiol Endod 90:310–316

    Article  CAS  Google Scholar 

  5. Goldberg M, Septier D, Bourd K, Hall R, Jeanny J, Jouet L, et al. (2002) The dentino-enamel junction revisited. Connect Tissue Res 43:482–489

    PubMed  CAS  Google Scholar 

  6. Boyde A, Sela J (1978) Scanning electron microscope study of separated calcospherites from the matrices of different mineralizing systems. Calcif Tissue Res 26:47–49

    Article  PubMed  CAS  Google Scholar 

  7. Fisher LW, Fedarko NS (2003) Six genes expressed in bones and teeth encode the current members of the SIBLING family of proteins. Connect Tissue Res 44(suppl 1):33–40

    PubMed  CAS  Google Scholar 

  8. Goldberg M, Smith AJ (2004) Cells and extracellular matrices of dentin and pulp: a biological basis for repair and tissue engineering. Crit Rev Oral Biol Med 15:13–27

    Article  PubMed  Google Scholar 

  9. Abe K, Ooshima T, Masatomi Y, Sobue S, Moriwaki Y (1989) Microscopic and crystallographic examinations of the teeth of the X-linked hypophosphatemic mouse. J Dent Res 68:1519–1524

    PubMed  CAS  Google Scholar 

  10. Scriver CR, Tenenhouse HS (1992) X-linked hypophosphataemia: a homologous phenotype in human and mice with unusual organ-specific gene dosage. J Inherit Metab Dis 15: 610–624

    Article  PubMed  CAS  Google Scholar 

  11. Onishi T, Ogawa T, Hayashibara T, Hoshino T, Okawa R, Ooshima T (2005) Hyper-expression of osteocalcin mRNA in odontoblasts of Hyp mice. J Dent Res 84:84–88

    Article  PubMed  CAS  Google Scholar 

  12. Ogawa T, Onishi T, Hayashibara T, Sakashita S, Okawa R, Ooshima T (2006) Dentinal defects in Hyp mice not caused by hypophosphatemia alone. Arch Oral Biol 51:58–63

    Article  PubMed  CAS  Google Scholar 

  13. Chaussain-Miller C, Sinding C, Wolikow M, Lasfargues JJ, Garabedian M (2003) Dental abnormalities in patients with X linked hypophosphatemic rickets: prevention by early treatment with 1-hydroxyvitamin D. J Pediatr 142:324–331

    Article  PubMed  CAS  Google Scholar 

  14. Fisher LW, Stubbs JT III, Young MF (1995) Antisera and cDNA probes to human and certain animal model bone matrix noncollagenous proteins. Acta Orthop Scand 266:61–65

    CAS  Google Scholar 

  15. Goldberg M, Septier D, Escaig-Haye F (1987) Glycoconjugates in dentinogenesis and dentine. In: Prog Histochem Cytochem 17:1–112

  16. Daley TD, Jarvis A, Wysocki GP, Kogon SL (1990) X-ray microanalysis of teeth from healthy patients and patients with familial hypophosphatemia. Calcif Tissue Int 47:350–355

    PubMed  CAS  Google Scholar 

  17. Seeto E, Seow WK (1991) Scanning electron microscopic analysis of dentin in vitamin D-resistant rickets - assessment of mineralization and correlation with clinical findings. Pediatr Dent 13:43–48

    PubMed  CAS  Google Scholar 

  18. Hietala EL, Larmas MA (1991) Mineral content of different areas of human dentin in hypophosphataemic vitamin D-resistant rickets. J Biol Buccale 19:129–134

    PubMed  CAS  Google Scholar 

  19. Hauschka PV, Frenkel J, DeMuth R, Gundberg CM (1983) Presence of osteocalcin and related higher molecular weight 4-carboxyglutamic acid-containing proteins in developing bone. J Biol Chem 258:176–182

    PubMed  CAS  Google Scholar 

  20. Ritter NM, Farach-Carson MC, Butler WT (1992) Evidence for the formation of a complex between osteopontin and osteocalcin. J Bone Miner Res 7:877–885

    PubMed  CAS  Google Scholar 

  21. Kaartinen MT, Pirhonen A, Linnala-Kankkunen A, Maenpaa PH (1997) Transglutaminase-catalyzed cross-linking of osteopontin is inhibited by osteocalcin. J Biol Chem 272:22736–22741

    Article  PubMed  CAS  Google Scholar 

  22. Gericke A, Qin C, Spevak L, Fujimoto Y, Butler WT, Sorensen ES, Boskey AL (2005) Importance of phosphorylation for osteopontin regulation of biomineralization. Calcif Tissue Int 77:45–54

    Article  PubMed  CAS  Google Scholar 

  23. Takagi Y, Sasaki S (1986) Histological distribution of phosphophoryn in normal and pathological human dentins. J Oral Pathol 15:463–467

    Article  PubMed  CAS  Google Scholar 

  24. D’Souza R, Bronckers ALJJ, Happonen RP, Doga DA, Farach-Carson MC, Butler WT (1992) Developmental expression of a 53 kD dentin sialoprotein in rat tooth organs. J Histochem Cytochem 40:359–366

    PubMed  CAS  Google Scholar 

  25. McKee MD, Nanci A, Landis WJ, Gotoh Y, Gerstenfeld LC, Glimcher MJ (1991) Effects of fixation and demineralization on the retention of bone phosphoprotein and other matrix components as evaluated by biochemical analyses and quantitative immunocytochemistry. J Bone Miner Res 6:937–945

    Article  PubMed  CAS  Google Scholar 

  26. Frank JD, Balena R, Masarachia P, Seedor JG, Cartwright ME (1993) The effects of three different demineralization agents on osteopontin localization in adult rat bone using immunohistochemistry. Histochem Cell Biol 99:295–301

    Article  CAS  Google Scholar 

  27. Chen J, McCulloch CA, Sodek J (1993) Bone sialoprotein in developing porcine dental tissues: cellular expression and comparison of tissue localization with osteopontin and osteonectin. Arch Oral Biol 38:241–249

    Article  PubMed  CAS  Google Scholar 

  28. Rahima M, Tsay TG, Andujar M, Veis A (1988) Localization of phosphophoryn in rat incisor dentin using immunocytochemical techniques. J Histochem Cytochem 36:153–157

    PubMed  CAS  Google Scholar 

  29. Septier D, Torres-Quintana MA, Menashi S, George A, Goldberg M (2001) Inositol hexasulphate, a casein kinase inhibitor, alters the distribution of dentin matrix protein 1 (DMP1) in cultured embryonic mouse tooth germs. Eur J Oral Sci 109:198–203

    Article  PubMed  CAS  Google Scholar 

  30. Goldberg M, Rapoport O, Septier D, Palmier K, Hall R, Embery G, Young M, Ameye L (2003) Proteoglycans in predentin: the last 15 micrometers before mineralization. Connect Tissue Res 44(suppl 1):184–188

    PubMed  CAS  Google Scholar 

  31. Boskey A, Spevak L, Tan M, Doty SB, Butler WT (2000) Dentin sialoprotein (DSP) has limited effects on in vitro apatite formation and growth. Calcif Tissue Int 67:472–478

    Article  PubMed  CAS  Google Scholar 

  32. Tartaix PH, Doulaverakis M, George A, Fisher LW, Butler WT, Qin C, et al. (2004). In vitro effects of dentin matrix protein-1 on hydroxyapatite formation provide insights into in vivo functions. J Biol Chem 279:18115–18120

    Article  PubMed  CAS  Google Scholar 

  33. Murshed M, Schinke T, McKee MD, Karsenty G (2004) Extracellular matrix mineralization is regulated locally: different roles of two gla-containing proteins. J Cell Biol 165:625–630

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

We thank Dr. Caren Gundberg (Yale University, New Haven, CT) for fruitful discussion on OC, David Montero for help in the SEM and X-ray microanalysis, and the French Ministry of Education and Research for the support given to our laboratory (EA2496).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Chaussain-Miller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boukpessi, T., Septier, D., Bagga, S. et al. Dentin Alteration of Deciduous Teeth in Human Hypophosphatemic Rickets. Calcif Tissue Int 79, 294–300 (2006). https://doi.org/10.1007/s00223-006-0182-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-006-0182-4

Keywords

Navigation