Skip to main content

Advertisement

Log in

Hypoxia Induces Giant Osteoclast Formation and Extensive Bone Resorption in the Cat

  • Laboratory Investigations
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Dental disease due to osteoclast (OC) overactivity reaches epidemic proportions in older domestic cats and has also been reported in wild cats. Feline odontoclastic resorptive lesions (FORL) involve extensive resorption of the tooth, leaving it liable to root fracture and subsequent loss. The etiopathogenesis of FORL remains unclear. Here, we explore the hypothesis that FORL is associated with hypoxia in the oral microenvironment, leading to increased OC activity. To investigate this, we developed a method of generating OCs from cat blood. Reducing O2 from 20% to 2% increased the mean area of OC eightfold from 0.01 to 0.08 mm2. In hypoxic cultures, very large OCs containing several hundred nuclei were evident (reaching a maximum size of ∼14 mm2). Cultures exposed to 2% O2 exhibited an increase of ∼13-fold in the area of bone slices covered by resorption lacunae. In line with this finding, there was a significant increase in cells differentiating under hypoxic conditions, reflected in increased expression of cathepsin K and proton pump enzymes. In conclusion, these results demonstrate that oxygen tension is a major regulator of OC formation in the cat. However, in this species, hypoxia induces the formation of “giant” OCs, which can be so large as to be visible with the naked eye and yet also actively resorb. This suggests that local hypoxia is likely to play a key role in the pathogenesis of FORL and other inflammatory conditions that are associated with bone resorption in cats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  1. Arnett T (2003) Regulation of bone cell function by acid-base balance. Proc Nutr Soc 62:511–520

    Article  PubMed  CAS  Google Scholar 

  2. Arnett TR, Dempster DW (1986) Effect of pH on bone resorption by rat osteoclasts in vitro. Endocrinology 119:119–124

    Article  PubMed  CAS  Google Scholar 

  3. Arnett TR, Spowage M (1996) Modulation of the resorptive activity of rat osteoclasts by small changes in extracellular pH near the physiological range. Bone 18:277–279

    Article  PubMed  CAS  Google Scholar 

  4. Meghji S, Henderson B, Morrison MS, Arnett TR (2001) pH dependence of bone resorption: mouse calvarial osteoclasts are activated by acidosis. Am J Physiol 280:E112–E119

    CAS  Google Scholar 

  5. Arnett TR, Gibbons DC, Utting JC, Orriss IR, Hoebertz A, Rosendaal M, Meghji S (2003) Hypoxia is a major stimulator of osteoclast formation and bone resorption. J Cell Physiol 196:2–8

    Article  PubMed  CAS  Google Scholar 

  6. Liu RS, Chu LS, Yen SH, Chang CP, Chou KL, Wu LC, Chang CW, Lui MT, Chen KY, Yeh SH (1996) Detection of anaerobic odontogenic infections by fluorine-18 fluoromisonidazole. Eur J Nucl Med 23:1384–1387

    Article  PubMed  CAS  Google Scholar 

  7. Lewis JS, Lee JA, Underwood JC, Harris AL, Lewis CE (1999) Macrophage responses to hypoxia: relevance to disease mechanisms. J Leukocyte Biol 66:889–900

    PubMed  CAS  Google Scholar 

  8. Bradley TR, Hodgson GS, Rosendaal M (1978) The effect of oxygen tension on haemopoietic and fibroblast cell proliferation in vitro. J Cell Physiol 97:517–522

    Article  PubMed  CAS  Google Scholar 

  9. Broxmeyer HE, Cooper S, Lu L, Miller ME, Langefeld CD, Ralph P (1990) Enhanced stimulation of human bone marrow macrophage colony formation in vitro by recombinant human macrophage colony-stimulating factor in agarose medium and at low oxygen tension. Blood 76:323–329

    PubMed  CAS  Google Scholar 

  10. Koller MR, Bender JG, Miller WM, Papoutsakis ET (1992) Reduced oxygen tension increases hematopoiesis in long-term culture of human stem and progenitor cells from cord blood and bone marrow. Exp Hematol 20:264–270

    PubMed  CAS  Google Scholar 

  11. Lonmer MJ, Verstraete FJ (2000) Prevalence of odontoclastic resorption lesions and peripheral radiographic lucencies in cats: 265 cases (1995–1998) J Am Vet Med Assoc 217:1866–1869

    Article  Google Scholar 

  12. Heaton M, Wilkinson J, Gorrel C, Butterwick R (2004) A rapid screening technique for feline odontoclastic resorptive lesions. J Small Anim Pract 45:598–601

    Article  PubMed  CAS  Google Scholar 

  13. Gengler W, Dubielzig R, Ramer J (1995) Physical examination and radiographic analysis to detect dental and mandibular bone resorption in cats: a study of 81 cases from necropsy. J Vet Dent 12:97–100

    PubMed  CAS  Google Scholar 

  14. Lyon KF (1992) Subgingival odontoclastic resorptive lesions: classification, treatment, and results in 58 cats. Vet Clin North Am Small Anim Pract 22:1417–1432

    PubMed  CAS  Google Scholar 

  15. Liang H, Burkes EJ, Frederiksen NL (2003) Multiple idiopathic cervical root resorption: systematic review and report of four cases. Dentomaxillofac Radiol 32:150–155

    Article  PubMed  CAS  Google Scholar 

  16. Okuda A, Harvey CE (1992) Etiopathogenesis of feline dental resorptive lesions. Vet Clin North Am Small Anim Pract 22:1385–1404

    PubMed  CAS  Google Scholar 

  17. Reiter AM, Mendoza KA (2002) Feline odontoclastic resorptive lesions: an unsolved enigma in veterinary dentistry. Vet Clin North Am Small Anim Pract 32:791–837

    Article  PubMed  Google Scholar 

  18. DeLaurier A, Allen S, deFlandre C, Horton MA, Price JS (2002) Cytokine expression in feline osteoclastic resorptive lesions. J Comp Pathol 127:169–177

    Article  PubMed  CAS  Google Scholar 

  19. Muzylak M, Flanagan AM, Ingham K, Gunn N, Price J, Horton MA (2002) A feline assay using osteoclasts generated in vitro from peripheral blood for screening antiresorptive agents. Res Vet Sci 73:283–290

    Article  PubMed  CAS  Google Scholar 

  20. Horton MA, Nesbitt SA, Bennett JH, Stenbeck G (2002) Integrins and other cell surface attachment molecules of bone cells. In: Bilezikian JP, Raisz LG, Rodan GA (eds), Principles of Bone Biology, 2nd ed. Academic Press, San Diego, pp 265–286

    Google Scholar 

  21. Lader CS, Flanagan AM (1998) Prostaglandin E2, interleukin 1α, and tumor necrosis factor- increase human osteoclast formation and bone resorption in vitro. Endocrinology 139:3157–3164

    Article  PubMed  CAS  Google Scholar 

  22. Massey HM, Flanagan AM (1999) Human osteoclasts derive from CD14-positive monocytes. Br J Haematol 106:167–170

    Article  PubMed  CAS  Google Scholar 

  23. Lader CS, Scopes J, Horton MA, Flanagan AM (2001) Generation of human osteoclasts in stromal cell-free and stromal cell-rich cultures: differences in osteoclast CD11c/CD18 integrin expression. Br J Haematol 112:430–437

    Article  PubMed  CAS  Google Scholar 

  24. Nesbitt SA, Horton MA (1997) Trafficking of matrix collagens through bone-resorbing osteoclasts. Science 276:266–269

    Article  PubMed  CAS  Google Scholar 

  25. Horton MA, Lewis D, McNulty K, Pringle JA, Chambers TJ (1985) Monoclonal antibodies to osteoclastomas (giant cell bone tumours): definition of osteoclast-specific cellular antigens. Cancer Res 45:5663–5669

    PubMed  CAS  Google Scholar 

  26. Horton MA, Massey HM, Rosenberg N, Nicholls B, Seligsohn U, Flanagan AM (2003) Upregulation of osteoclast α2β1 integrin compensates for lack of αvβ3 vitronectin receptor in Iraqi-Jewish-type Glanzmann thrombasthenia. Br J Haematol 122:950–957

    Article  PubMed  CAS  Google Scholar 

  27. Bennett D (1995) Diseases of the musculoskeletal system. In: Chandler EA, Gaskell CJ, Gaskell RM (eds), Feline Medicine and Therapeutics. Blackwell Science, Oxford, pp 150–191

    Google Scholar 

  28. Clark L (1970) The effect of excess vitamin A on long bone growth in kittens. J Comp Pathol 80:625–634

    Article  PubMed  CAS  Google Scholar 

  29. Barber PJ, Elliott J (1998) Feline chronic renal failure: calcium homeostasis in 80 cases between 1992 and 1995. J Small Anim Pract 39:108–116

    Article  PubMed  CAS  Google Scholar 

  30. Heldmann E, Anderson MA, Wagner-Mann C (2000) Feline osteosarcoma: 145 cases (1990–1995). J Am Anim Hosp Assoc 36:518–521

    PubMed  CAS  Google Scholar 

  31. Hill FWG (1977) A survey of bone fractures in the cat. J Small Anim Pract 18:457–463

    PubMed  CAS  Google Scholar 

  32. Addison WC (1978) Enzyme histochemical properties of kitten osteoclasts in bone imprint preparations. Histochem J 10:645–656

    Article  PubMed  CAS  Google Scholar 

  33. Allen TD, Testa NG, Suda T, Schor SL, Onions D, Jarrett O, Boyde A (1981) The production of putative osteoclasts in tissue culture – ultrastructure, formation and behaviour. Scanning Electron Microsc 3:347–354

    Google Scholar 

  34. Ibbotson KJ, Roodman GD, McManus LM, Mundy GR (1984) Identification and characterization of osteoclast-like cells and their progenitors in cultures of feline marrow mononuclear cells. J Cell Biol 99:471–480

    Article  PubMed  CAS  Google Scholar 

  35. Pharoah MJ, Heersche JN (1985) 1,25-Dihydroxyvitamin D3 causes an increase in the number of osteoclast like cells in cat bone marrow cultures. Calcif Tissue Int 37:276–281

    PubMed  CAS  Google Scholar 

  36. Horton MA, Fowler P, Simpson A, Onions D (1988) Monoclonal antibodies to human antigens recognise feline myeloid cells. Vet Immunol Immunopathol 18:213–217

    Article  PubMed  CAS  Google Scholar 

  37. Massey HM, Scopes J, Horton MA, Flanagan AM (2001) Transforming growth factor-beta1 (TGF-β) stimulates the osteoclast-forming potential of peripheral blood hematopoietic precursors in a lymphocyte-rich microenvironment. Bone 28:577–582

    Article  PubMed  CAS  Google Scholar 

  38. Addison WC (1980) The effect of parathyroid hormone on the numbers of nuclei in feline odontoclasts in vivo. J Periodontal Res 15:536–543

    Article  PubMed  CAS  Google Scholar 

  39. De Vico G, Maiolino P (1997) “Osteoclast-like” giant cells in a feline mammary carcinoma. J Submicrosc Cytol Pathol 29:153–155

    PubMed  Google Scholar 

  40. Reddy SV, Menaa C, Singer FR, Demulder A, Roodman GD (1999) Cell biology of Paget’s disease. J Bone Miner Res (suppl 2):3–8

    Google Scholar 

  41. Muzylak M, Arnett TR, Price J, Horton MA (2004) The effect of pH on osteoclast function in the cat. Bone 34:S25–S47

    Google Scholar 

  42. Martin GR, Jain RK (1994) Non-invasive measurement of interstitial pH profiles in normal and neoplastic tissue using fluorescence ratio imaging microscopy. Cancer Res 54:5670–5674

    PubMed  CAS  Google Scholar 

  43. Ivanovic Z, Hermitte F, de la Grange PB, Dazey B, Belloc F, Lacombe F, Vezon G, Praloran V (2004) Simultaneous maintenance of human cord blood SCID-repopulating cells and expansion of committed progenitors at low O2 concentration (3%). Stem Cells 22:716–724

    Article  PubMed  Google Scholar 

  44. Chen EH, Olsen EN (2005) Unveiling the mechanisms of cell fusion. Science 308:369–373

    Article  PubMed  CAS  Google Scholar 

  45. Kudo Y, Boyd CA, Sargeant IL, Redman CW (2003) Hypoxia alters expression and function of syncytin and its receptor during trophoblast cell fusion of human placental BeWo cells: implications for impaired trophoblast syncytialisation in pre-eclampsia. Biochim Biophys Acta 1638:63–71

    PubMed  CAS  Google Scholar 

  46. Bruick RK, McKnight SL (2001) A conserved family of prolyl-4-hydroxylases that modify HIF. Science 294:1337–1340

    Article  PubMed  CAS  Google Scholar 

  47. Jaakkola P, Mole DR, Tian YM, Wilson MI, Gielbert J, Gaskell SJ, Kriegsheim AV, Hebestreit HF, Mukherji A, Schofield CJ, Maxwell PH, Pugh CW, Ratcliffe PJ (2001) Targeting of HIF-α to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 292:468–472

    PubMed  CAS  Google Scholar 

  48. Bodin P, Burnstock G (1995) Synergistic effect of acute hypoxia on flow-induced release of ATP from cultured endothelial cells. Experientia 51:256–259

    Article  PubMed  CAS  Google Scholar 

  49. Morrison M, Turin L, King BF, Burnstock G, Arnett TR (1998) ATP is a potent stimulator of the activation and formation of rodent osteoclasts. J Physiol 511:495–500

    Article  PubMed  CAS  Google Scholar 

  50. Hoebertz A, Townsend-Nicholson A, Burnstock G, Arnett TR (2000) Expression of P2 receptors in bone and cultured bone cells. Bone 27:503–510

    Article  PubMed  CAS  Google Scholar 

  51. Hoebertz A, Meghji S, Burnstock G, Arnett TR (2001) Extracellular ADP is a powerful osteolytic agent: evidence for signaling through the P2Y1 receptor on bone cells. FASEB J 15:1139–1148

    Article  PubMed  CAS  Google Scholar 

  52. Hasegawa K, Ichiyama T, Isumi H (2003) NF-κB activation in peripheral blood mononuclear cells in neonatal asphyxia. Clin Exp Immunol 132:261–264

    Article  PubMed  CAS  Google Scholar 

  53. Lubec B, Labudova O, Hoeger H, Kirchner L, Lubec G (2002) Expression of transcription factors in the brain of rats with perinatal asphyxia. Biol Neonate 81:266–278

    Article  PubMed  CAS  Google Scholar 

  54. Simmons HA, Raisz LG (1991) Effects of acid and basic fibroblast growth factor and heparin on resorption of cultured fetal rat long bones. J Bone Miner Res 6:1301–1305

    Article  PubMed  CAS  Google Scholar 

  55. Nakagawa N, Yasuda H, Yano K, Mochizuki S, Kobayashi N, Fujimoto H, Shima N, Morinaga T, Chikazu D, Kawaguchi H, Higashio K (1999) Basic fibroblast growth factor induces osteoclast formation by reciprocally regulating the production of osteoclast differentiation factor and osteoclastogenesis inhibitory factor in mouse osteoblastic cells. Biochem Biophys Res Commun 265:158–163

    Article  PubMed  CAS  Google Scholar 

  56. Nakagawa M, Kaneda T, Arakawa T, Morita S, Sato T, Yomada T, Hanada K, Kumegawa M, Yakeda Y (2000) Vascular endothelial growth factor (VEGF) directly enhances osteoclastic bone resorption and survival of mature osteoclasts. FEBS Lett 473:161–164

    Article  PubMed  CAS  Google Scholar 

  57. Akeno N, Czyzyk-Krzeska MF, Gross TS, Clemens TL (2001) Hypoxia induces vascular endothelial growth factor gene transcription in human osteoblast-like cells through the hypoxia-inducible factor-2α. Endocrinology 142:959–962

    Article  PubMed  CAS  Google Scholar 

  58. Steinbrech DS, Mehrara BJ, Saadeh PB, Chin G, Dudziak ME, Gerrets RP, Gittes GK, Longaker MT (1999) Hypoxia regulates VEGF expression and cellular proliferation by osteoblasts in vitro. Plast Reconstr Surg 104:738–747

    PubMed  CAS  Google Scholar 

  59. Steinbrech DS, Mehrara BJ, Saadeh PB, Greenwald JA, Spector JA, Gittes GK, Longaker MT (2000) VEGF expression in an osteoblast-like cell line is regulated by a hypoxia response mechanism. Am J Physiol 278:C853–C860

    CAS  Google Scholar 

  60. Steinbrech DS, Mehrara BJ, Saadeh PB, Greenwald JA, Spector JA, Gittes GK, Longaker MT (2000) Hypoxia increases insulin-like growth factor gene expression in rat osteoblasts. Ann Plast Surg 44:529–535

    Article  PubMed  CAS  Google Scholar 

  61. Warren SM, Steinbrech DS, Mehrara BJ, Saadeh PB, Greenwald JA, Spector JA, Buletreau PJ, Longaker MT (2001) Hypoxia regulates osteoblast gene expression. J Surg Res 99:147–155

    Article  PubMed  CAS  Google Scholar 

  62. Hill PA, Reynolds JJ, Meikle MC (1995) Osteoblasts mediate insulin-like growth factor-I and -II stimulation of osteoclast formation and function. Endocrinology 136:124–131

    Article  PubMed  CAS  Google Scholar 

  63. Fuller K, Lean JM, Bayley KE, Wani MR, Chambers TJ (2000) A role for TGFβ1 in osteoclast differentiation and survival. J Cell Sci 113:2445–2453

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was carried out with the financial help of a grant from the Waltham Centre for Pet Nutrition (Waltham-on-the-Wolds, UK). M. A. H. is supported by a program grant from The Wellcome Trust. The authors are grateful for the expert advice and help of Timothy Arnett, Jenny Utting, and Andrea Brandao-Burch (University College London).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Horton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muzylak, M., Price, J.S. & Horton, M.A. Hypoxia Induces Giant Osteoclast Formation and Extensive Bone Resorption in the Cat. Calcif Tissue Int 79, 301–309 (2006). https://doi.org/10.1007/s00223-006-0082-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-006-0082-7

Keywords

Navigation