Skip to main content
Log in

Association of Reduced Physical Activity and Quantitative Ultrasound Measurements: A 6-Year Follow-up Study of Adolescent Girls

  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Sonographic parameters of the heel were recorded in order to investigate the effects of changes in physical activities among 140 healthy growing peripubertal Caucasian girls. Calcaneal quantitative ultrasound measurements (Hologic Sahara) were recorded at baseline and 2- and 6-year follow-up. Broadband ultrasound attenuation, speed of sound (SOS), and T scores were documented. Altogether, 30 girls reduced their physical activity by >50% and 29 girls by 25–50%, whereas 81 girls continued at the present level or increased it. Age and physical activity together accounted for 16.7% of the variation in calcaneal T scores at baseline and for 16.4% at 2-year follow-up, whereas physical activity alone accounted for 11.3% of the variation at 6-year follow-up. The reduction in mean T scores was significant (from 2.0 to 0.8, P < 0.001) among those having discontinued their physical activity by the 6-year measurement. The changes between three groups were statistically significantly different from each other (P = 0.003). The mean SOS values decreased 16.78 meters per second (95% CI −26.9 to −6.7) among those having discontinued their physical activity between the 2- and 6-year follow-up measurements. The SOS value sensitively reacts to changes in physical activity, and consequently, it will help assess changes in bone quality. Because of such an immediate reaction, SOS is a good-quality measure for the physical condition of bone in young people and a suitable tool for detecting changes in calcaneal bone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Baran D, Kelly A, Karellas A, Gionet M, Price M, Leahey D, Steuterman S, McSherry B, Roche J (1988) Ultrasound attenuation of the os calcis in women with osteoporosis and hip fractures. Calcif Tissue Int 43:138–142

    PubMed  CAS  Google Scholar 

  2. Hans D, Dargent-Molina P, Schott AM, Sebert JL, Cormier C, Kotziki PO, Delmas PD, Pouilles JM, Breat G, Meunier PJ, EPIDOS Prospective Study Group (1996) Ultrasonographic heel measurements to predict hip fracture in elderly women: the EPIDOS prospective study. Lancet 348:511–514

    Article  PubMed  CAS  Google Scholar 

  3. Bauer DC, Gluer CC, Cauley JA, Vogt TM, Ensrud KE, Genant HK, Black DM (1997) Broadband ultrasound attenuation predicts fractures strongly and independently of densitometry in older women. A prospective study. Arch Intern Med 157:629–634

    Article  PubMed  CAS  Google Scholar 

  4. Bonjour JPH, Theintz G, Buchs B, Slosman D, Rizzoli R (1991) Critical years and stages of puberty for spinal and femoral bone mass accumulation during adolescence. J Clin Endocrinol Metab 73:555–563

    Article  PubMed  CAS  Google Scholar 

  5. Theintz C, Buchs B, Rizzoli R, Slosman D, Clavien H, Sizonenko PC, Bonjour JPH (1992) Longitudinal monitoring of bone mass in healthy adolescence: evidence of marked reduction after 16 years of age at the level of lumbar spine and femoral neck in female subjects. J Clin Endocrinol Metab 75:1060–1065

    Article  PubMed  CAS  Google Scholar 

  6. Bailey DA (1997) The Saskatchewan Pediatric Bone Mineral Accrual Study: bone mineral acquisition during the growing years. Int J Sports Med 18:S191–S194

    PubMed  Google Scholar 

  7. Bass S, Pearce G, Bradney M, Hendrich E, Delmas P, Harding A, Seeman E (1998) Exercise before puberty may confer residual benefits in bone density in adulthood: studies in active prepubertal and retired female gymnasts. J Bone Miner Res 3:500–507

    Article  Google Scholar 

  8. Krall EA, Dawson-Hughes B (1993) Heritable and life-style determinants of bone mineral density. J Bone Miner Res 8:1–9

    PubMed  CAS  Google Scholar 

  9. Jouanny P, Guillemin F, Kuntz C, Jeandel C, Pourel J (1995) Environmental and genetic factors affecting bone mass: similarity of bone density among members of healthy families. Arthritis Rheum 38:61–67

    PubMed  CAS  Google Scholar 

  10. Kannus P, Haapasalo H, Sankelo M, Sievänen H, Pasanen M, Heinonen A, Oja P, Vuori I (1995) Effect of starting age of physical activity on bone mass in the dominant arm of tennis and squash players. Ann Intern Med 123:27–31

    PubMed  CAS  Google Scholar 

  11. Grimston SK, Willows ND, Hanley DA (1993) Mechanical loading regime and its relationship to bone mineral density in children. Med Sci Sports Exerc 25:1202–1210

    Google Scholar 

  12. Heinonen A, Oja P, Kannus P, Sievänen H, Haapasalo H, Mänttäri A, Vuori I (1995) Bone mineral density in female athletes representing sports with different loading characteristics of skeleton. Bone 17:197–203

    Article  PubMed  CAS  Google Scholar 

  13. Robinson TL, Snow Harter C, Taaffe DR, Gillis D, Shaw J, Marcus R (1995) Gymnasts exhibit higher bone mass than runners despite similar prevalence of amenorrhea and oligomenorrhea. J Bone Miner Res 10:26–35

    Article  PubMed  CAS  Google Scholar 

  14. Heinonen A, Kannus P (1996) Randomised controlled trial of effect of high-impact exercise on selected risk factors for osteoporotic fractures. Lancet 348:1343–1347

    Article  PubMed  CAS  Google Scholar 

  15. Dyson K, Blimkie CJ, Davison KS, Webber CE, Adachi JD (1997) Gymnastic training and bone density in pre-adolescent females. Med Sci Sports Exerc. 29:443–450

    PubMed  CAS  Google Scholar 

  16. Winters K, Snow C (2000) Detraining reverses positive effects of exercise on the musculoskeletal system in premenopausal women. J Bone Miner Res 15:2495–2503

    Article  PubMed  CAS  Google Scholar 

  17. Gustavsson A, Olsson T, Nordström P (2003) Rapid loss of bone mineral density of the femoral neck after cessation of training: a 6-year longitudinal study in males. J Bone Miner Res 18:1964–1969

    Article  PubMed  Google Scholar 

  18. Nordström A, Olsson T, Nordström P (2005) Bone gained from physical activity and lost through detraining: a longitudinal study in young males. Osteoporos Int 16:835–841

    Article  PubMed  Google Scholar 

  19. Valdimarsson O, Alborg HG, Duppe H, Nyquist F, Kalsson M (2005) Reduced training is associated with increased loss of BMD. J Bone Miner Res 20:906–912

    Article  PubMed  Google Scholar 

  20. Kontulainen S, Kannus P, Haapasalo H, Sievänen H, Pasanen M, Heinonen A, Oja P, Vuori I (2001) Good maintenance of exercise induced bone gain with decreased training of female tennis and squash players: a prospective 5-year follow-up study of young and old starters and controls. J Bone Miner Res 16:195–201

    Article  PubMed  CAS  Google Scholar 

  21. Kudlac J, Nichols DL, Sanborn CF, DiMarco NM (2004) Impact of detraining on bone loss in former collegiate female gymnasts. Calcif Tissue Int 75:482–487

    Article  PubMed  CAS  Google Scholar 

  22. Kontulainen S, Heinonen A, Kannus P, Pasanen M, Sievänen H, Vuori I (2004) Former exercisers of an 18-month intervention display residual aBMD benefits compared with control women 3.5 years post-intervention: a follow-up of a randomized controlled high-impact trial. Osteoporos Int 15:248–251

    Article  PubMed  CAS  Google Scholar 

  23. Fuchs R, Snow C (2002) Gains in bone mass from high-impact training are maintained: a randomized controlled trial in children. J Pediatr 141:357–362

    Article  PubMed  Google Scholar 

  24. Hoshino H, Kushida K, Yamazaki K, Takahashi M, Ogihara H, Naitoh K, Toyoyama O, Doi S, Tamai H, Inoue T (1996) Effect of physical activity as a caddie on ultrasound measurements of the os calsis: a cross-sectional comparison. J Bone Miner Res 11:412–418

    PubMed  CAS  Google Scholar 

  25. Bram H, Strom H, Piehl-Aulin K, Mallmin H, Ljunghall S (1997) Bone metabolism in endurance trained athletes: a comparison to population-based controls based DXA, SXA, quantitative ultrasound, and biochemical markers. Calcif Tissue Int 61:448–454

    Article  Google Scholar 

  26. Lehtonen-Veromaa M, Möttönen T, Nuotio I, Heinonen O, Viikari J (2000) Influence of physical activity on ultrasound and dual-energy X-ray absorptiometry bone measurements in pubertal girls: a cross-sectional study. Calcif Tissue Int 66:248–254

    Article  PubMed  CAS  Google Scholar 

  27. Karlsson M, Magnuson H, Karlsson C, Seeman E (2001) The duration of exercise as a regulator of bone mass. Bone 28:128–132

    Article  PubMed  CAS  Google Scholar 

  28. Falk B, Bronshtein Z, Zigel L, Constantini N, Eliakin A (2003) Quantitative ultrasound of the tibia and radius in prepubertal and early pubertal female athletes. Arch Pediatr Adolesc Med 157:139–143

    PubMed  Google Scholar 

  29. Lehtonen-Veromaa M, Möttönen T, Kautiainen H, Heinonen OJ, Viikari J (2001) Influence of physical activity and cessation of training on calcaneal quantitative ultrasound measurements in peripubertal girls: a 1-year prospective study. Calcif Tissue Int 68:146–150

    Article  PubMed  CAS  Google Scholar 

  30. Tanner JM (1962) Growth at Adolescence. Blackwell Scientific Publications, Oxford

    Google Scholar 

  31. Raitakari OT, Taimela S, Porkka KVK, Leino M, Telama R, Dahl M, Viikari JSA (1996) Patterns of intense physical activity among 15- to 30-year-old Finns. The Cardiovascular Risk in Young Finns Study. Scand J Med Sci Sports 6:36–39

    Article  CAS  Google Scholar 

  32. Lehtonen-Veromaa M, Möttönen T, Irjala K, Kärkkäinen M, Lamberg-Allardt C, Hakola P, Viikari J (1999) Vitamin D intake is low and hypovitaminosis is common in healthy 9- to 15-year-old Finnish girls. Eur J Clin Nutr 53:746–751

    Article  PubMed  CAS  Google Scholar 

  33. Uusi-Rasi K, Salmi HM, Fogelholm M (1994) Estimation of calcium and riboflavin intake by a short diary. Scand J Nutr 38:122–124

    Google Scholar 

  34. Langton CM, Palmer SB, Porter SW (1984) The measurement of broadband ultrasound attenuation in cancellous bone. Eng Med 13:89–91

    PubMed  CAS  Google Scholar 

  35. Gluer CC, Wu CY, Jergas M, Goldstein SA, Genant HK (1994) Three quantitative ultrasound parameters reflect bone structure. Calcif Tissue Int 55:46–52

    Article  PubMed  CAS  Google Scholar 

  36. Han D, Wu C, Njeh CF, Zhao S, Augat P Newitt D, Link T, Lu Y, Majumdar S, Genant HK (1997) Ultrasound velocity and broadband attenuation as predictors of load-bearing capacities of human calcanei. Calcif Tissue Int 60:21–25

    Article  PubMed  CAS  Google Scholar 

  37. Daly RM, Rich PA, Klein R, Bass S (1999) Effects of high-impact exercise ultrasonic and biochemical indices of skeletal status: a prospective study in young male gymnasts. J Bone Miner Res 14:1222–1230

    Article  PubMed  CAS  Google Scholar 

  38. Cheng S, Fan B, Wang L, Fuerst T, Lian M, Njeh C, He Y, Kern M, Lappin M, Tylavsky F, Casal D, Harris S, Genant HK (1999) Factors affecting broadband ultrasound attenuation results of the calcaneus using a gel-coupled quantitative ultrasound scanning system. Osteoporos Int 10:495–504

    Article  PubMed  CAS  Google Scholar 

  39. Frost M, Blake G, Fogelman I (2000) Can the WHO criteria for diagnosing osteoporosis be applied to calcaneal quantitative ultrasound? Osteoporos Int 11:321–330

    Article  PubMed  CAS  Google Scholar 

  40. Frost M, Blake G, Fogelman I (2001) Quantitative ultrasound and bone mineral density are equally strongly associated with risk factors for osteoporosis. J Bone Miner Res 16:406–416

    Article  PubMed  CAS  Google Scholar 

  41. Laugier P, Novikov V, Elmann-Larsen B, Berger G (2000) Quantitative ultrasound imaging of the calcaneus: precision and variations during a 120-day bed rest. Calcif Tissue Int 66:16–21

    Article  PubMed  CAS  Google Scholar 

  42. Yamaga A, Taga M, Minaguchi H, Sato K (1996) Changes in bone mass as determined by ultrasound and biochemical markers of bone turnover during pregnancy and puerperium: a longitudinal study. J Clin Endocrinol Metab 81:752–756

    Article  PubMed  CAS  Google Scholar 

  43. Pajamäki I, Kannus P, Vuohelainen T, Sievänen H, Tuukkanen J, Järvinen M, Järvinen TL (2003) The bone gain induced by exercise in puberty is not preserved through a virtually life-long deconditioning: a randomized controlled experimental study in male rats. J Bone Miner Res 18:544–552

    Article  PubMed  Google Scholar 

  44. Järvinen TL, Pajamaki I, Sievänen H, Vuohelainen T, Tuukkanen J, Järvinen M, Kannus P (2003) Femoral neck response to exercise and subsequent deconditioning in young and adult rats. J Bone Miner Res 18:1292–1299

    Article  PubMed  Google Scholar 

  45. Fujie H, Miyagaki J, Terrier A, Rakotomanana L, Leyvraz P-F, Hayashi K (2004) Detraining effects on the mechanical properties and morphology of rat tibiae. Biomed Mater Eng 14:219–233

    PubMed  Google Scholar 

Download references

Acknowledgments

The Medical Research Foundation of Turku University Central Hospital and the Turku University Foundation supported the study. Ansa Ojanlatva, PhD, is acknowledged for having made comments and suggestions on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Rautava.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rautava, E., Lehtonen-Veromaa, M., Möttönen, T. et al. Association of Reduced Physical Activity and Quantitative Ultrasound Measurements: A 6-Year Follow-up Study of Adolescent Girls. Calcif Tissue Int 79, 50–56 (2006). https://doi.org/10.1007/s00223-005-0306-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-005-0306-2

Keywords

Navigation