Skip to main content

Advertisement

Log in

From Molds and Macrophages to Mevalonate: A Decade of Progress in Understanding the Molecular Mode of Action of Bisphosphonates

  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Although bisphosphonates were first used as therapeutic agents to inhibit bone resorption in the early 1970s, their mode of action at the molecular level has only become fully clear within the last few years. One of the reasons for this lack of understanding was the difficulty in isolating large numbers of pure osteoclasts for biochemical studies. In the last decade, the identification of appropriate surrogate models that reflected the antiresorptive potencies of bisphosphonates, such as Dictyostelium slime molds and macrophages, helped overcome this problem and proved to be instrumental in elucidating the molecular pathways by which these compounds inhibit osteoclast-mediated bone resorption. This brief review summarizes our current understanding of these pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. PD Delmas (2002) ArticleTitleTreatment of postmenopausal osteoporosis Lancet 359 2018–2026 Occurrence Handle10.1016/S0140-6736(02)08827-X Occurrence Handle1:CAS:528:DC%2BD38XksFKkt7g%3D Occurrence Handle12076571

    Article  CAS  PubMed  Google Scholar 

  2. PN Sambrook (2002) ArticleTitleGlucocorticoid osteoporosis Curr Pharm Des 8 1877–1883 Occurrence Handle1:CAS:528:DC%2BD38Xmt1art74%3D Occurrence Handle12171526

    CAS  PubMed  Google Scholar 

  3. C Roux M Dougados (1999) ArticleTitleTreatment of patients with Paget’s disease of bone Drugs 58 823–830 Occurrence Handle1:CAS:528:DC%2BD3cXhsVGjsw%3D%3D Occurrence Handle10595863

    CAS  PubMed  Google Scholar 

  4. RE Coleman (2001) ArticleTitleMetastatic bone disease: clinical features, pathophysiology and treatment strategies Cancer Treat Rev 27 165–176 Occurrence Handle10.1053/ctrv.2000.0210 Occurrence Handle1:CAS:528:DC%2BD3MXktlCktb4%3D Occurrence Handle11417967

    Article  CAS  PubMed  Google Scholar 

  5. P Clezardin P Fournier S Boissier O Peyruchaud (2003) ArticleTitleIn vitro and in vivo antitumor effects of bisphosphonates Curr Med Chem 10 173–180 Occurrence Handle1:CAS:528:DC%2BD3sXlt1CrtA%3D%3D Occurrence Handle12570716

    CAS  PubMed  Google Scholar 

  6. MJ Rogers (2003) ArticleTitleNew insights into the molecular mechanisms of action of bisphosphonates Curr Pharm Des 9 2643–2658 Occurrence Handle1:CAS:528:DC%2BD3sXpsVCkt7Y%3D Occurrence Handle14529538

    CAS  PubMed  Google Scholar 

  7. T Yoneda N Hashimoto T Hiraga (2003) ArticleTitleBisphosphonate actions on cancer Calcif Tissue Int 73 315–318 Occurrence Handle10.1007/s00223-002-0025-x Occurrence Handle1:CAS:528:DC%2BD3sXos1als7k%3D Occurrence Handle12874704

    Article  CAS  PubMed  Google Scholar 

  8. JR Green MJ Rogers (2002) ArticleTitlePharmacologic profile of zoledronic acid: a highly potent inhibitor of bone resorption Drug Dev Res 55 210–224 Occurrence Handle10.1002/ddr.10071 Occurrence Handle1:CAS:528:DC%2BD38Xlt1KqsLg%3D

    Article  CAS  Google Scholar 

  9. A Jung S Bisaz H Fleisch (1973) ArticleTitleThe binding of pyrophosphate and two diphosphonates by hydroxyapatite crystals Calcif Tissue Res 11 269–280 Occurrence Handle1:CAS:528:DyaE3sXhsFGksLk%3D Occurrence Handle4350498

    CAS  PubMed  Google Scholar 

  10. T Chen J Berenson R Vescio R Swift A Gilchick S Goodin P LoRusso P Ma C Ravera F Deckert H Schran J Seaman A Skerjanec (2002) ArticleTitlePharmacokinetics and pharmacodynamics of zoledronic acid in cancer patients with bone metastases J Clin Pharmacol 42 1228–1236 Occurrence Handle10.1177/009127002762491316 Occurrence Handle1:CAS:528:DC%2BD38XovVClt7o%3D Occurrence Handle12412821

    Article  CAS  PubMed  Google Scholar 

  11. V Cocquyt WF Kline BJ Gertz SJ Belle ParticleVan SD Holland M DeSmet H Quan KP Vyas KE Zhang J Greve ParticleDe AG Porras (1999) ArticleTitlePharmacokinetics of intravenous alendronate J Clin Pharmacol 39 385–393 Occurrence Handle10.1177/00912709922007958 Occurrence Handle1:CAS:528:DyaK1MXjtl2htLY%3D Occurrence Handle10197297

    Article  CAS  PubMed  Google Scholar 

  12. S Cremers R Sparidans HJ Den N Hamdy P Vermeij S Papapoulos (2002) ArticleTitleA pharmacokinetic and pharmacodynamic model for intravenous bisphosphonate (pamidronate) in osteoporosis Eur J Clin Pharmacol 57 883–890 Occurrence Handle10.1007/s00228-001-0411-8 Occurrence Handle1:CAS:528:DC%2BD38XitlOrt7c%3D Occurrence Handle11936708

    Article  CAS  PubMed  Google Scholar 

  13. SA Khan JA Kanis S Vasikaran WF Kline BK Matuszewski EV McCloskey MN Beneton BJ Gertz DG Sciberras SD Holland J Orgee GM Coombes SR Rogers AG Porras (1997) ArticleTitleElimination and biochemical responses to intravenous alendronate in postmenopausal osteoporosis J Bone Miner Res 12 1700–1707 Occurrence Handle1:CAS:528:DyaK2sXmvVSqsbs%3D Occurrence Handle9333131

    CAS  PubMed  Google Scholar 

  14. JH Lin (1996) ArticleTitleBisphosphonates: a review of their pharmacokinetic properties Bone 18 75–85 Occurrence Handle10.1016/8756-3282(95)00445-9 Occurrence Handle1:CAS:528:DyaK28XisVGjs7g%3D Occurrence Handle8833200

    Article  CAS  PubMed  Google Scholar 

  15. P Masarachia M Weinreb R Balena GA Rodan (1996) ArticleTitleComparison of the distribution of 3H-alendronate and 3H-etidronate in rat and mouse bones Bone 19 281–290 Occurrence Handle10.1016/8756-3282(96)00182-2 Occurrence Handle1:CAS:528:DyaK28XlvFehtb0%3D Occurrence Handle8873969

    Article  CAS  PubMed  Google Scholar 

  16. FH Ebetino MD Francis MJ Rogers RGG Russell (1998) ArticleTitleMechanisms of action of etidronate and other bisphosphonates Rev Contemp Pharmacother 9 233–243 Occurrence Handle1:CAS:528:DyaK1cXktlCntrg%3D

    CAS  Google Scholar 

  17. G Stenbeck MA Horton (2000) ArticleTitleA new specialized cell-matrix interaction in actively resorbing osteoclasts J Cell Sci 113 1577–1587 Occurrence Handle1:CAS:528:DC%2BD3cXjvFaqurw%3D Occurrence Handle10751149

    CAS  PubMed  Google Scholar 

  18. M Sato W Grasser N Endo R Akins H Simmons DD Thompson E Golub GA Rodan (1991) ArticleTitleBisphosphonate action. Alendronate localization in rat bone and effects on osteoclast ultrastructure J Clin Invest 88 2095–2105 Occurrence Handle1:CAS:528:DyaK38XjsVGgtA%3D%3D Occurrence Handle1661297

    CAS  PubMed  Google Scholar 

  19. JC Frith MJ Rogers (2003) ArticleTitleAntagonistic effects of different classes of bisphosphonates in osteoclasts and macrophages in vitro J Bone Miner Res 18 204–212 Occurrence Handle1:CAS:528:DC%2BD3sXht1Sksbo%3D Occurrence Handle12568397

    CAS  PubMed  Google Scholar 

  20. G Klein J-B Martin M Satre (1989) ArticleTitleMethylenediphosphonate, a metabolic poison in Dictyostelium discoideum. 31P NMR evidence for accumulation of adenosine 5’-(beta,gamma-methylenetriphosphate) and diadenosine 5’,5’’’-P1,P4-(P2,P3-methylenetetraphosphate) Biochem 27 1897–1901

    Google Scholar 

  21. MJ Rogers X Ji RG Russell GM Blackburn MP Williamson AV Bayless FH Ebetino DJ Watts (1994) ArticleTitleIncorporation of bisphosphonates into adenine nucleotides by amoebae of the cellular slime mould Dictyostelium discoideum Biochem J 303 303–311 Occurrence Handle1:CAS:528:DyaK2cXmtVSktLs%3D Occurrence Handle7945256

    CAS  PubMed  Google Scholar 

  22. MJ Rogers RGG Russell GM Blackburn MP Williamson DJ Watts (1992) ArticleTitleMetabolism of halogenated bisphosphonates by the cellular slime mould Dictyostelium discoideum Biochem Biophys Res Commun 189 414–423 Occurrence Handle1:CAS:528:DyaK3sXhs1Cqurk%3D Occurrence Handle1333194

    CAS  PubMed  Google Scholar 

  23. S Pelorgeas JB Martin M Satre (1992) ArticleTitleCytotoxicity of dichloromethane diphosphonate and of 1-hydroxyethane-1,1-diphosphonate in the amoebae of the slime mould Dictyostelium discoideum A 31P NMR study Biochem Pharmacol 44 2157–2163 Occurrence Handle10.1016/0006-2952(92)90342-G Occurrence Handle1:CAS:528:DyaK3sXns12gsg%3D%3D Occurrence Handle1472080

    Article  CAS  PubMed  Google Scholar 

  24. MJ Rogers X Xiong RJ Brown DJ Watts RG Russell AV Bayless FH Ebetino (1995) ArticleTitleStructure-activity relationships of new heterocycle-containing bisphosphonates as inhibitors of bone resorption and as inhibitors of growth of Dictyostelium discoideum amoebae Mol Pharmacol 47 398–402 Occurrence Handle1:CAS:528:DyaK2MXktVSlsbg%3D Occurrence Handle7870050

    CAS  PubMed  Google Scholar 

  25. JC Frith J Monkkonen GM Blackburn RG Russell MJ Rogers (1997) ArticleTitleClodronate and liposome-encapsulated clodronate are metabolized to a toxic ATP analog, adenosine 5’-(beta, gamma-dichloromethylene) triphosphate, by mammalian cells in vitro J Bone Miner Res 12 1358–1367 Occurrence Handle1:CAS:528:DyaK2sXmt1Wks7s%3D Occurrence Handle9286751

    CAS  PubMed  Google Scholar 

  26. MJ Rogers RJ Brown V Hodkin GM Blackburn RGG Russell DJ Watts (1996) ArticleTitleBisphosphonates are incorporated into adenine nucleotides by, human aminoacyl-tRNA synthetase enzymes Biochem Biophys Res Commun 224 863–869 Occurrence Handle10.1006/bbrc.1996.1113 Occurrence Handle1:CAS:528:DyaK28Xks1Wju70%3D Occurrence Handle8713136

    Article  CAS  PubMed  Google Scholar 

  27. HL Benford JC Frith S Auriola J Monkkonen MJ Rogers (1999) ArticleTitleFarnesol and geranylgeraniol prevent activation of caspases by aminobisphosphonates: biochemical evidence for two distinct pharmacological classes of bisphosphonate drugs Mol Pharmacol 56 131–140 Occurrence Handle1:CAS:528:DyaK1MXksFOmt7g%3D Occurrence Handle10385693

    CAS  PubMed  Google Scholar 

  28. S Auriola J Frith MJ Rogers A Koivuniemi J Monkkonen (1997) ArticleTitleIdentification of adenine nucleotide-containing metabolites of bisphosphonate drugs using ion-pair liquid chromatography-electrospray mass spectrometry J Chrom B 704 187–195 Occurrence Handle10.1016/S0378-4347(97)00490-8 Occurrence Handle1:CAS:528:DyaK1cXjslGrug%3D%3D

    Article  CAS  Google Scholar 

  29. JC Frith J Monkkonen S Auriola H Monkkonen MJ Rogers (2001) ArticleTitleThe molecular mechanism of action of the anti-resorptive and anti-inflammatory drug clodronate: evidence for the formation in vivo of a metabolite that inhibits bone resorption and causes osteoclast and macrophage apoptosis Arth Rheum 44 2201–2210 Occurrence Handle10.1002/1529-0131(200109)44:9<2201::AID-ART374>3.0.CO;2-E Occurrence Handle1:CAS:528:DC%2BD3MXpt12lt7g%3D

    Article  CAS  Google Scholar 

  30. H Monkkonen MJ Rogers N Makkonen S Niva S Auriola J Monkkonen (2001) ArticleTitleThe cellular uptake and metabolism of clodronate in RAW 264 macrophages Pharm Res 18 1550–1555 Occurrence Handle10.1023/A:1013026313647 Occurrence Handle1:CAS:528:DC%2BD3MXos1aqu7Y%3D Occurrence Handle11758762

    Article  CAS  PubMed  Google Scholar 

  31. AM Flanagan TJ Chambers (1989) ArticleTitleDichloromethylenebisphosphonate (Cl2MBP) inhibits bone resorption through injury to osteoclasts that resorb Cl2MBP-coated bone Bone Miner 6 33–43 Occurrence Handle10.1016/0169-6009(89)90021-4 Occurrence Handle1:CAS:528:DyaL1MXktleltro%3D Occurrence Handle2526673

    Article  CAS  PubMed  Google Scholar 

  32. E Hiroi-Furuya T Kameda K Hiura H Mano K Miyazawa Y Nakamaru M Watanabe-Mano N Okuda J Shimada Y Yamamoto Y Hakeda M Kumegawa (1999) ArticleTitleEtidronate (EHDP) inhibits osteoclastic-bone resorption, promotes apoptosis disrupts actin rings in isolate-mature osteoclasts Calcif Tissue Int 64 219–223 Occurrence Handle10.1007/s002239900606 Occurrence Handle1:CAS:528:DyaK1MXhs1ymurc%3D Occurrence Handle10024379

    Article  CAS  PubMed  Google Scholar 

  33. DE Hughes KR Wright HL Uy A Sasaki T Yoneda GD Roodman GR Mundy BF Boyce (1995) ArticleTitleBisphosphonates promote apoptosis in murine osteoclasts in vitro and in vivo J Bone Miner Res 10 1478–1487 Occurrence Handle1:CAS:528:DyaK2MXpsFGmsbo%3D Occurrence Handle8686503

    CAS  PubMed  Google Scholar 

  34. R Schenk WA Merz R Muhlbauer RGG Russell H Fleisch (1973) ArticleTitleEffect of ethane-1-hydroxy-1,1-diphosphonate (EHDP) and dichloromethylene diphosphonate (Cl 2 MDP) on the calcification and resorption of cartilage and bone in the tibial epiphysis and metaphysis of rats Calcif Tissue Res 11 196–214 Occurrence Handle1:CAS:528:DyaE3sXktVSrs7g%3D Occurrence Handle4707191

    CAS  PubMed  Google Scholar 

  35. K Selander P Lehenkari HK Vaananen (1994) ArticleTitleThe effects of bisphosphonates on the resorption cycle of isolated osteoclasts Calcif Tissue Int 55 368–375 Occurrence Handle1:CAS:528:DyaK2MXhvFWhtLw%3D Occurrence Handle7532540

    CAS  PubMed  Google Scholar 

  36. KS Selander J Monkkonen EK Karhukorpi P Harkonen R Hannuniemi HK Vaananen (1996) ArticleTitleCharacteristics of clodronate-induced apoptosis in osteoclasts and macrophages Mol Pharmacol 50 1127–1138 Occurrence Handle1:CAS:528:DyaK28XntFCqsrk%3D Occurrence Handle8913344

    CAS  PubMed  Google Scholar 

  37. PP Lehenkari M Kellinsalmi JP Napankangas KV Ylitalo J Monkkonen MJ Rogers A Azhayev HK Vaananen IE Hassinen (2002) ArticleTitleFurther insight into mechanism of action of clodronate: inhibition of mitochondrial ADP/ATP translocase by a nonhydrolyzable, adenine-containing metabolite Mol Pharmacol 61 1255–1262 Occurrence Handle10.1124/mol.61.5.1255 Occurrence Handle1:CAS:528:DC%2BD38XjtlGksr8%3D Occurrence Handle11961144

    Article  CAS  PubMed  Google Scholar 

  38. HL Benford NW McGowan MH Helfrich ME Nuttall MJ Rogers (2001) ArticleTitleVisualization of bisphosphonate-induced caspase-3 activity in apoptotic osteoclasts in vitro Bone 28 465–473 Occurrence Handle10.1016/S8756-3282(01)00412-4 Occurrence Handle1:CAS:528:DC%2BD3MXjtlChsL4%3D Occurrence Handle11344045

    Article  CAS  PubMed  Google Scholar 

  39. G Kroemer JC Reed (2000) ArticleTitleMitochondrial control of cell death Nature Med 6 513–519 Occurrence Handle10.1038/74994 Occurrence Handle1:CAS:528:DC%2BD3cXjtFyhsL4%3D Occurrence Handle10802706

    Article  CAS  PubMed  Google Scholar 

  40. AA Reszka JM Halasy-Nagy PJ Masarachia GA Rodan (1999) ArticleTitleBisphosphonates act directly on the osteoclast to induce caspase cleavage of mst1 kinase during apoptosis. A link between inhibition of the mevalonate pathway and regulation of an apoptosis-promoting kinase J Biol Chem 274 34967–34973

    Google Scholar 

  41. JM Halasy-Nagy GA Rodan AA Reszka (2001) ArticleTitleInhibition of bone resorption by alendronate and risedronate does not require osteoclast apoptosis Bone 29 553–559 Occurrence Handle10.1016/S8756-3282(01)00615-9 Occurrence Handle1:CAS:528:DC%2BD3MXos1Knt70%3D Occurrence Handle11728926

    Article  CAS  PubMed  Google Scholar 

  42. D Amin SA Cornell SK Gustafson SJ Needle JW Ullrich GE Bilder MH Perrone (1992) ArticleTitleBisphosphonates used for the treatment of bone disorders inhibit squalene synthase and cholesterol biosynthesis J Lipid Res 33 1657–1663 Occurrence Handle1:CAS:528:DyaK3sXntlCktA%3D%3D Occurrence Handle1464749

    CAS  PubMed  Google Scholar 

  43. D Amin SA Cornell MH Perrone GE Bilder (1996) ArticleTitle1-Hydroxy-3-(methylpentylamino)-propylidene-1,1-bisphosphonic acid as a potent inhibitor of squalene synthase Arzneimittel-Forschung 46 759–762 Occurrence Handle1:CAS:528:DyaK28XltVyrt70%3D Occurrence Handle9125274

    CAS  PubMed  Google Scholar 

  44. MJ Rogers KM Chilton FP Coxon J Lawry MO Smith S Suri RGG Russell (1996) ArticleTitleBisphosphonates induce apoptosis in mouse macrophage-like cells in vitro by a nitric oxide-independent mechanism J Bone Miner Res 11 1482–1491 Occurrence Handle1:CAS:528:DyaK28XmsValtb8%3D Occurrence Handle8889848

    CAS  PubMed  Google Scholar 

  45. FP Coxon HL Benford RGG Russell MJ Rogers (1998) ArticleTitleProtein synthesis is required for caspase activation and induction of apoptosis by bisphosphonate drugs Mol Pharmacol 54 631–638 Occurrence Handle1:CAS:528:DyaK1cXmvVWjt7s%3D Occurrence Handle9765505

    CAS  PubMed  Google Scholar 

  46. JD Bergstrom RG Bostedor PJ Masarachia AA Reszka G Rodan (2000) ArticleTitleAlendronate is a specific, nanomolar inhibitor of farnesyl diphosphate synthase Arch Biochem Biophys 373 231–241 Occurrence Handle10.1006/abbi.1999.1502 Occurrence Handle1:CAS:528:DC%2BD3cXosVWl Occurrence Handle10620343

    Article  CAS  PubMed  Google Scholar 

  47. JE Dunford K Thompson FP Coxon SP Luckman FM Hahn CD Poulter FH Ebetino MJ Rogers (2001) ArticleTitleStructure-activity relationships for inhibition of farnesyl diphosphate synthase in vitro and inhibition of bone resorption in vivo by nitrogen-containing bisphosphonates J Pharm Exp Ther 296 235–242 Occurrence Handle1:CAS:528:DC%2BD3MXoslaluw%3D%3D

    CAS  Google Scholar 

  48. JE Grove RJ Brown DJ Watts (2000) ArticleTitleThe intracellular target for the antiresorptive aminobisphosphonate drugs in Dictyostelium discoideum is the enzyme farnesyl diphosphate synthase J Bone Miner Res 15 971–981 Occurrence Handle1:CAS:528:DC%2BD3cXjt1CrsLg%3D Occurrence Handle10804029

    CAS  PubMed  Google Scholar 

  49. RK Keller SJ Fliesler (1999) ArticleTitleMechanism of aminobisphosphonate action: characterization of alendronate inhibition of the isoprenoid pathway Biochem Biophys Res Commun 266 560–563 Occurrence Handle10.1006/bbrc.1999.1849 Occurrence Handle1:CAS:528:DyaK1MXnvFersbg%3D Occurrence Handle10600541

    Article  CAS  PubMed  Google Scholar 

  50. E Beek Particlevan E Pieterman L Cohen C Lowik S Papapoulos (1999) ArticleTitleFarnesyl pyrophosphate synthase is the molecular target of nitrogen-containing bisphosphonates Biochem Biophys Res Common 264 108–111 Occurrence Handle10.1006/bbrc.1999.1499

    Article  Google Scholar 

  51. MJ Rogers DJ Watts RG Russell X Ji X Xiong GM Blackburn AV Bayless FH Ebetino (1994) ArticleTitleInhibitory effects of bisphosphonates on growth of amoebae of the cellular slime mold Dictyostelium discoideum J Bone Miner Res 9 1029–1039 Occurrence Handle1:CAS:528:DyaK2cXmsVGisLg%3D Occurrence Handle7942149

    CAS  PubMed  Google Scholar 

  52. CM Szabo MB Martin E Oldfield (2002) ArticleTitleAn investigation of bone resorption and Dictyostelium discoideum growth inhibition by bisphosphonate drugs J Med Chem 45 2894–2903 Occurrence Handle10.1021/jm010279+ Occurrence Handle1:CAS:528:DC%2BD38XktlCgsLg%3D Occurrence Handle12086477

    Article  CAS  PubMed  Google Scholar 

  53. MB Martin JS Grimley JC Lewis HT Heath SuffixIII BN Bailey H Kendrick V Yardley A Caldera R Lira JA Urbina SN Moreno R Docampo SL Croft E Oldfield (2001) ArticleTitleBisphosphonates inhibit the growth of Trypanosoma brucei, Trypanosoma cruzi, Leishmania donovani, Toxoplasma gondii, and Plasmodium falciparum: a potential route to chemotherapy J Med Chem 44 909–916 Occurrence Handle10.1021/jm0002578 Occurrence Handle1:CAS:528:DC%2BD3MXhtFymsrc%3D Occurrence Handle11300872

    Article  CAS  PubMed  Google Scholar 

  54. MB Martin JM Sanders H Kendrick K Luca-Fradley JC Lewis JS Grimley EM Brussel ParticleVan JR Olsen GA Meints A Burzynska P Kafarski SL Croft E Oldfield (2002) ArticleTitleActivity, of bisphosphonates against Trypanosoma brucei rhodesiense J Med Chem 45 2904–2914 Occurrence Handle10.1021/jm0102809 Occurrence Handle1:CAS:528:DC%2BD38Xkt1ajs7g%3D Occurrence Handle12086478

    Article  CAS  PubMed  Google Scholar 

  55. A Montalvetti BN Bailey MB Martin GW Severin E Oldfield R Docampo (2001) ArticleTitleBisphosphonates are potent inhibitors of Trypanosoma cruzi farnesyl pyrophosphate synthase J Biol Chem 276 33930–33937

    Google Scholar 

  56. A Montalvetti A Fernandez JM Sanders S Ghosh E Brussel ParticleVan E Oldfield R Docampo (2003) ArticleTitleFarnesyl pyrophosphate synthase is an essential enzyme in Trypanosoma brucei. In vitro RNA interference and in vivo inhibition studies J Biol Chem 278 17075–17083

    Google Scholar 

  57. MB Martin W Arnold HT Heath JA Urbina E Oldfield (1999) ArticleTitleNitrogen-containing bisphosphonates as carbocation transition state analogs for isoprenoid biosynthesis Biochem Biophys Res Commun 263 754–758 Occurrence Handle10.1006/bbrc.1999.1404 Occurrence Handle1:CAS:528:DyaK1MXmtlCrtrg%3D Occurrence Handle10512752

    Article  CAS  PubMed  Google Scholar 

  58. DJ Hosfield Y Zhang DR Dougan A Brooun LW Tari RV Swanson J Finn (2004) ArticleTitleStructural basis for bisphosphonate-mediated inhibition of isoprenoid biosynthesis J Biol Chem 279 8526–8529

    Google Scholar 

  59. SP Luckman FP Coxon FH Ebetino RGG Russell MJ Rogers (1998) ArticleTitleHeterocycle-containing bisphosphonates cause apoptosis and inhibit bone resorption by preventing protein prenylation: evidence from structure-activity relationships in J774 macrophages J Bone Miner Res 13 1668–1678 Occurrence Handle1:CAS:528:DyaK1cXntFOjt74%3D Occurrence Handle9797474

    CAS  PubMed  Google Scholar 

  60. E Kotsikorou E Oldfield (2003) ArticleTitleA quantitative structure-activity relationship and pharmacophore modeling investigation of aryl-X and heterocyclic bisphosphonates as bone resorption agents J Med Chem 46 2932–2944 Occurrence Handle10.1021/jm030054u Occurrence Handle1:CAS:528:DC%2BD3sXntlSlsL4%3D Occurrence Handle12825934

    Article  CAS  PubMed  Google Scholar 

  61. R Schenk P Eggli H Fleisch S Rosini (1986) ArticleTitleQuantitative morphometric evaluation of the inhibitory activity of new aminobisphosphonates on bone resorption in the rat Calcif Tissue Int 38 342–349 Occurrence Handle1:CAS:528:DyaL28Xlt1Ons7s%3D Occurrence Handle3089557

    CAS  PubMed  Google Scholar 

  62. H Shinoda G Adamek R Felix H Fleisch R Schenk P Hagan (1983) ArticleTitleStructure-activity relationships of various bisphosphonates Calcif Tissue Int 35 87–99 Occurrence Handle1:CAS:528:DyaL3sXhslamtbk%3D Occurrence Handle6839194

    CAS  PubMed  Google Scholar 

  63. WK Sietsema FH Ebetino AM Salvagno JA Bevan (1989) ArticleTitleAntiresorptive dose-response relationships across three generations of bisphosphonates Drugs Exp Clin Res 15 389–396 Occurrence Handle1:CAS:528:DyaK3cXhvFWgu7g%3D Occurrence Handle2630251

    CAS  PubMed  Google Scholar 

  64. E Beek Particlevan M Hoekstra M Ruit Particlevan de C Lowik S Papapoulos (1994) ArticleTitleStructural requirements for bisphosphonate actions in vitro J Bone Miner Res 9 1875–1882 Occurrence Handle1:CAS:528:DyaK2MXivFSqsrw%3D Occurrence Handle7872052

    CAS  PubMed  Google Scholar 

  65. FP Coxon MH Helfrich B Larijani M Muzylak JE Dunford D Marshall AD McKinnon SA Nesbitt MA Horto MC Seabra FH Ebetino MJ Rogers (2001) ArticleTitleIdentification of a novel phosphonocarboxylate inhibitor of Rab geranylgeranyl transferase that specifically prevents Rab prenylation in osteoclasts and macrophages J Biol Chem 276 48213–48222

    Google Scholar 

  66. FH Ebetino LA Jamieson (1990) ArticleTitleThe design and synthesis of bone-active phosphinic acid analogues: I. The pyridylaminomethane phosphonoalkylphosphinates Phosphorus, Sulfur and Silicon 51/52 23–26

    Google Scholar 

  67. K Thompson JE Dunford FH Ebetino MJ Rogers (2002) ArticleTitleIdentification of a bisphosphonate that inhibits isopentenyl diphosphate isomerase and farnesyl diphosphate synthase Biochem Biophys Res Common 290 869–873 Occurrence Handle10.1006/bbrc.2001.6289 Occurrence Handle1:CAS:528:DC%2BD38XislartQ%3D%3D

    Article  CAS  Google Scholar 

  68. JL Goldstein MS Brown (1990) ArticleTitleRegulation of the mevalonate pathway Nature 343 425–430 Occurrence Handle10.1038/343425a0 Occurrence Handle1:CAS:528:DyaK3cXhtlCmtbw%3D Occurrence Handle1967820

    Article  CAS  PubMed  Google Scholar 

  69. R Roskoski SuffixJr (2003) ArticleTitleProtein prenylation: a pivotal posttranslational process Biochem Biophys Res Commun 303 1–7 Occurrence Handle10.1016/S0006-291X(03)00323-1 Occurrence Handle1:CAS:528:DC%2BD3sXitFahtLs%3D Occurrence Handle12646157

    Article  CAS  PubMed  Google Scholar 

  70. FL Zhang PJ Casey (1996) ArticleTitleProtein prenylation: molecular mechanisms and functional consequences Ann Rev Biochem 65 241–269 Occurrence Handle10.1146/annurev.bi.65.070196.001325 Occurrence Handle1:CAS:528:DyaK28XktFamtL0%3D Occurrence Handle8811180

    Article  CAS  PubMed  Google Scholar 

  71. M Sinensky (2000) ArticleTitleRecent advances in the study of prenylated proteins Biochim Biophys Acta 1484 93–106 Occurrence Handle10.1016/S1388-1981(00)00009-3 Occurrence Handle1:CAS:528:DC%2BD3cXisVKgtLs%3D Occurrence Handle10760460

    Article  CAS  PubMed  Google Scholar 

  72. SP Luckman DE Hughes FP Coxon RGG Russell MJ Rogers (1998) ArticleTitleNitrogen-containing bisphosphonates inhibit the mevalonate pathway and prevent posttranslational prenylation of GTP-binding proteins, including Ras J Bone Miner Res 13 581–589 Occurrence Handle1:CAS:528:DyaK1cXisFyktb8%3D Occurrence Handle9556058

    CAS  PubMed  Google Scholar 

  73. V Breuil F Cosman L Stein W Horbert J Nieves V Shen R Lindsay DW Dempster (1998) ArticleTitleHuman osteoclast formation and activity in vitro: effects of alendronate J Bone Miner Res 13 1721–1729 Occurrence Handle1:CAS:528:DyaK1cXntFOhsb8%3D Occurrence Handle9797481

    CAS  PubMed  Google Scholar 

  74. A Carano SL Teitelbaum JD Konsek PH Schlesinger HC Blair (1990) ArticleTitleBisphosphonates directly inhibit the bone resorption activity of isolated avian osteoclasts in vitro J Clin Invest 85 456–461 Occurrence Handle1:CAS:528:DyaK3cXhsFWmtbs%3D Occurrence Handle2105340

    CAS  PubMed  Google Scholar 

  75. M Sato W Grasser (1990) ArticleTitleEffects of bisphosphonates on isolated rat osteoclasts as examined by reflected light microscopy J Bone Miner Res 5 31–40 Occurrence Handle1:CAS:528:DyaK3cXhtlahsbw%3D Occurrence Handle2106763

    CAS  PubMed  Google Scholar 

  76. FP Coxon MH Helfrich RJ van’t Hof SM Sebti SH Ralston AD Hamilton MJ Rogers (2000) ArticleTitleProtein geranylgeranylation is required for osteoclast formation, function, and survival: inhibition by bisphosphonates and GGTI-298 J Bone Miner Res 15 1467–1476 Occurrence Handle1:CAS:528:DC%2BD3cXlvVSjsLw%3D Occurrence Handle10934645

    CAS  PubMed  Google Scholar 

  77. A Staal JC Frith MH French J Swartz T Gungor TW Harrity J Tamasi MJ Rogers JH Feyen (2003) ArticleTitleThe ability of statins to inhibit bone resorption is directly related to their inhibitory effect on HMG-CoA reductase activity J Bone Miner Res 18 88–96 Occurrence Handle1:CAS:528:DC%2BD3sXltFKksg%3D%3D Occurrence Handle12510809

    CAS  PubMed  Google Scholar 

  78. JE Fisher GA Rodan AA Reszka (2000) ArticleTitleIn vivo effects of bisphosphonates on the osteoclast mevalonate pathway Endocrinology 141 4793–4796 Occurrence Handle10.1210/en.141.12.4793 Occurrence Handle1:CAS:528:DC%2BD3cXosVSqt7k%3D Occurrence Handle11108295

    Article  CAS  PubMed  Google Scholar 

  79. ML Coleman MF Olson (2002) ArticleTitleRho GTPase signaling pathways in the morphological changes associated with apoptosis Cell Death Differ 9 493–504 Occurrence Handle10.1038/sj.cdd.4400987 Occurrence Handle1:CAS:528:DC%2BD38XktF2qs7Y%3D Occurrence Handle11973608

    Article  CAS  PubMed  Google Scholar 

  80. FP Coxon MJ Rogers (2003) ArticleTitleThe role of prenylated small GTP-binding proteins in the regulation of osteoclast function Calcif Tissue Int 72 80–84 Occurrence Handle10.1007/s00223-002-2017-2 Occurrence Handle1:CAS:528:DC%2BD3sXltleqsA%3D%3D Occurrence Handle12370802

    Article  CAS  PubMed  Google Scholar 

  81. S Etienne-Manneville A Hall (2002) ArticleTitleRho GTPases in cell biology Nature 420 629–635 Occurrence Handle10.1038/nature01148 Occurrence Handle1:CAS:528:DC%2BD38XpsVSitbw%3D Occurrence Handle12478284

    Article  CAS  PubMed  Google Scholar 

  82. M Zerial H McBride (2001) ArticleTitleRab proteins as membrane organizers Nat Rev Mol Cell Biol 2 107–117 Occurrence Handle10.1038/35052055 Occurrence Handle1:CAS:528:DC%2BD3MXivVSitL8%3D Occurrence Handle11252952

    Article  CAS  PubMed  Google Scholar 

  83. MA Chellaiah N Soga S Swanson S McAllister U Alvarez D Wang SF Dowdy KA Hruska (2000) ArticleTitleRho-A is critical for osteoclast podosome organization, motility, and bone resorption J Biol Chem 275 11993–12002

    Google Scholar 

  84. S Ory Y Munari-Silem P Fort P Jurdic (2000) ArticleTitleRho and Rac exert antagonistic functions on spreading of macrophage-derived multinucleated cells and are not required for actin fiber formation J Cell Sci 113 1177–1188 Occurrence Handle1:CAS:528:DC%2BD3cXjtFylsrg%3D Occurrence Handle10704369

    CAS  PubMed  Google Scholar 

  85. S Razzouk M Lieberherr G Cournot (1999) ArticleTitleRac-GTPase, osteoclast cytoskeleton and bone resorption Eur J Cell Biol 78 249–255 Occurrence Handle1:CAS:528:DyaK1MXjt1altLs%3D Occurrence Handle10350213

    CAS  PubMed  Google Scholar 

  86. D Zhang N Udagawa I Nakamura H Murakami S Saito K Yamasaki Y Shibasaki N Morii S Narumiya N Takahashi T Suda (1995) ArticleTitleThe small GTP-binding protein, rho p21, is involved in bone resorption by regulating cytoskeletal organization in osteoclasts J Cell Sci 108 2285–2292 Occurrence Handle1:CAS:528:DyaK2MXmsFOgu7k%3D Occurrence Handle7673348

    CAS  PubMed  Google Scholar 

  87. H Murakami N Takahashi T Sasaki N Udagawa S Tanaka I Nakamura D Zhang A Barbier T Suda (1995) ArticleTitleA possible mechanism of the specific action of bisphosphonates on osteoclasls: tiludronate preferentially affects polarized osteoclasts having ruffled borders Bone 17 137–144 Occurrence Handle10.1016/S8756-3282(95)00150-6 Occurrence Handle1:CAS:528:DyaK2MXnvFSisrs%3D Occurrence Handle8554921

    Article  CAS  PubMed  Google Scholar 

  88. A Alakangas K Selander M Mulari J Halleen P Lehenkari J Monkkonen J Salo K Vaananen (2002) ArticleTitleAlendronate disturbs vesicular trafficking in osteoclasts Calcif Tissue Int 70 40–47 Occurrence Handle10.1007/s002230010047 Occurrence Handle1:CAS:528:DC%2BD38XjvFSjur4%3D Occurrence Handle11907706

    Article  CAS  PubMed  Google Scholar 

  89. Z Zimolo G Wesolowski GA Rodan (1995) ArticleTitleAcid extrusion is induced by osteoclast attachment to bone. Inhibition by alendronate and calcitonin J Clin Invest 96 2277–2283 Occurrence Handle1:CAS:528:DyaK28XltF2isQ%3D%3D Occurrence Handle7593614

    CAS  PubMed  Google Scholar 

  90. MT Mulari H Zhao PT Lakkakorpi HK Vaananen (2003) ArticleTitleOsteoclast ruffled border has distinct subdomains for secretion and degraded matrix uptake Traffic 4 113–125 Occurrence Handle10.1034/j.1600-0854.2003.40206.x Occurrence Handle1:CAS:528:DC%2BD3sXhtlGjtLc%3D Occurrence Handle12559037

    Article  CAS  PubMed  Google Scholar 

  91. SA Nesbitt MA Horton (1997) ArticleTitleTrafficking of matrix collagens through bone-resorbing osteoclasts Science 276 266–269

    Google Scholar 

  92. J Salo P Lehenkari M Mulari K Metsikko HK Vaananen (1997) ArticleTitleRemoval of osteoclast bone resorption products by transcytosis Science 276 270–273

    Google Scholar 

  93. H Glantschnig JE Fisher G Wesolowski GA Rodan AA Reszka (2003) ArticleTitleM-CSF, TNFalpha and RANK ligand promote osteoclast survival by signaling through mTOR/S6 kinase Cell Death Differ 10 1165–1177 Occurrence Handle10.1038/sj.cdd.4401285 Occurrence Handle1:CAS:528:DC%2BD3sXntlGqsbw%3D Occurrence Handle14502240

    Article  CAS  PubMed  Google Scholar 

  94. JE Fisher MJ Rogers JM Halasy SP Luckman DE Hughes PJ Masarachia G Wesolowski RGG Russell GA Rodan AA Reszka (1999) ArticleTitleAlendronate mechanism of action: geranylgeraniol, an intermediate in the mevalonate pathway, prevents inhibition of osteoclast formation, bone resorption and kinase activation in vitro Proc Natl Acad Sci USA 96 133–138 Occurrence Handle10.1073/pnas.96.1.133 Occurrence Handle1:CAS:528:DyaK1MXjvV2isA%3D%3D Occurrence Handle9874784

    Article  CAS  PubMed  Google Scholar 

  95. E Beek Particlevan C Lowik G Pluijm ParticleVan der S Papapoulos (1999) ArticleTitleThe role of geranylgeranylation in bone resorption and its suppression by bisphosphonates in fetal bone explants in vitro: a clue to the mechanism of action of nitrogen-containing bisphosphonates J Bone Miner Res 14 722–729 Occurrence Handle10320520

    PubMed  Google Scholar 

  96. HC Blair SL Teitelbaum R Ghiselli S Gluck (1989) ArticleTitleOsteoclastic bone resorption by a polarized vacuolar proton pump Science 245 855–857

    Google Scholar 

  97. P David H Nguyen A Barbier R Baron (1996) ArticleTitleThe bisphosphonate tiludronate is a potent inhibitor of the osteoclast vacuolar H(+)-ATPase J Bone Miner Res 11 1498–1507 Occurrence Handle1:CAS:528:DyaK28XmsValtb0%3D Occurrence Handle8889850

    CAS  PubMed  Google Scholar 

  98. P David R Baron (1995) ArticleTitleThe vacuolar H+-ATPase: a potential target for drug development in bone diseases Exp Opin Invest Drugs 4 725–739 Occurrence Handle1:CAS:528:DyaK2MXnsV2ksbw%3D

    CAS  Google Scholar 

  99. O Teronen P Heikkila YT Konttinen M Laitinen T Salo R Hanemaaijer A Teronen P Maisi T Sorsa (1999) ArticleTitleMMP inhibition and downregulation by bisphosphonates Ann NY Acad Sci 878 453–65 Occurrence Handle1:CAS:528:DyaK1MXkslemsL0%3D Occurrence Handle10415748

    CAS  PubMed  Google Scholar 

  100. R Felix R Graham G Russell H Fleisch (1976) ArticleTitleThe effect of several diphosphonates on acid phosphohydrolases and other lysosomal enzymes Biochim Biophys Acta 429 429–438 Occurrence Handle10.1016/0005-2744(76)90291-6 Occurrence Handle1:CAS:528:DyaE28XhsVKkurc%3D Occurrence Handle177070

    Article  CAS  PubMed  Google Scholar 

  101. N Endo SJ Rutledge EE Opas R Vogel GA Rodan A Schmidt (1996) ArticleTitleHuman protein tyrosine phosphatase-sigma: alternative splicing and inhibition by bisphosphonates J Bone Miner Res 11 535–543 Occurrence Handle1:CAS:528:DyaK28XisF2gs7k%3D Occurrence Handle8992885

    CAS  PubMed  Google Scholar 

  102. H Murakami N Takahashi S Tanaka I Nakaimira N Udagawa S Nakajo K Nakaya M Abe Y Yuda F Konno A Barbier T Suda (1997) ArticleTitleTiludronate inhibits protein tyrosine phosphatase activity in osteoclasts Bone 20 399–404 Occurrence Handle10.1016/S8756-3282(97)00025-2 Occurrence Handle1:CAS:528:DyaK2sXjsV2iuro%3D Occurrence Handle9145236

    Article  CAS  PubMed  Google Scholar 

  103. EE Opas SJ Rutledge E Golub A Stern Z Zimolo GA Rodan A Schmidt (1997) ArticleTitleAlendronate inhibition of protein-tyrosine-phosphatase-meg1 Biochem Pharmacol 54 721–727 Occurrence Handle10.1016/S0006-2952(97)00225-6 Occurrence Handle1:CAS:528:DyaK2sXmt1yjs7k%3D Occurrence Handle9310349

    Article  CAS  PubMed  Google Scholar 

  104. A Schmidt SJ Rutledge N Endo EE Opas H Tanaka G Wesolowski CT Leu Z Huang C Ramachandaran SB Rodan GA Rodan (1996) ArticleTitleProtein-tyrosine phosphatase activity regulates osteoclast formation and function: inhibition by alendronate Proc Natl Acad Sci U S A 93 3068–3073 Occurrence Handle10.1073/pnas.93.7.3068 Occurrence Handle1:CAS:528:DyaK28XitVCiurk%3D Occurrence Handle8610169

    Article  CAS  PubMed  Google Scholar 

  105. K Skorey HD Ly J Kelly M Hammond C Ramachandran Z Huang MJ Grosser Q Wang (1997) ArticleTitleHow does alendronate inhibit protein-tyrosine phosphatases? J Biol Chem 272 22472–22480

    Google Scholar 

  106. ER Beek Particlevan LH Cohen IM Leroy FH Ebetino CW Lowik SE Papapoulos (2003) ArticleTitleDifferentiating the mechanisms of antiresorptive action of nitrogen containing bisphosphonates Bone 33 805–811 Occurrence Handle10.1016/j.bone.2003.07.007 Occurrence Handle14623056

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

I would like to acknowledge past and present members of my laboratory, particularly Dr. Julie Crockett (nee Frith), Dr. Fraser Coxon, Dr. Helena Rogers (nee Benford) , Dr. Jim Dunford, Dr. Steven Luckman, and Dr. Keith Thompson, for their vital contributions to this work. The authors’ work has been supported by the Arthritis Research Campaign, the Medical Research Council, the Scottish Hospital Endowments Research Trust, the Leukaemia Research Fund, the National Association for the Relief of Paget’s Disease, Novartis, Procter & Gamble, and Merck.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. Rogers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rogers, M.J. From Molds and Macrophages to Mevalonate: A Decade of Progress in Understanding the Molecular Mode of Action of Bisphosphonates. Calcif Tissue Int 75, 451–461 (2004). https://doi.org/10.1007/s00223-004-0024-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-004-0024-1

Keywords

Navigation