Skip to main content
Log in

p-converse to a theorem of Gross–Zagier, Kolyvagin and Rubin

  • Published:
Inventiones mathematicae Aims and scope

Abstract

Let E be a CM elliptic curve over the rationals and \(p>3\) a good ordinary prime for E. We show that

$$\begin{aligned} {\mathrm {corank}}_{{\mathbb {Z}}_{p}} {\mathrm {Sel}}_{p^{\infty }}(E_{/{\mathbb {Q}}})=1 \implies {\mathrm {ord}}_{s=1}L(s,E_{/{\mathbb {Q}}})=1 \end{aligned}$$

for the \(p^{\infty }\)-Selmer group \({\mathrm {Sel}}_{p^{\infty }}(E_{/{\mathbb {Q}}})\) and the complex L-function \(L(s,E_{/{\mathbb {Q}}})\). In particular, the Tate–Shafarevich group \(\hbox {X}(E_{/{\mathbb {Q}}})\) is finite whenever \({\mathrm {corank}}_{{\mathbb {Z}}_{p}} {\mathrm {Sel}}_{p^{\infty }}(E_{/{\mathbb {Q}}})=1\). We also prove an analogous p-converse for CM abelian varieties arising from weight two elliptic CM modular forms with trivial central character. For non-CM elliptic curves over the rationals, first general results towards such a p-converse theorem are independently due to Skinner (A converse to a theorem of Gross, Zagier and Kolyvagin, arXiv:1405.7294, 2014) and Zhang (Camb J Math 2(2):191–253, 2014).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Strictly speaking, \(\lambda \) is not self-dual as an automorphic representation of \({\mathrm {GL}}_{1/K}\). It is so after an automorphic induction to \({\mathbb {Q}}\). We follow this unconventional terminology throughout.

  2. We refer to [49] for details.

  3. We refer to [13, §3.3] for details.

  4. The existence follows from g being p-ordinary.

  5. We refer to [3, §1.2].

  6. We also refer to [33, §11.1].

  7. We also refer to [3, §4.2] and references therein.

  8. Note that we are ignoring interpolation factors at places away from p appearing elsewhere in the literature, since those, while non-integral, can be interpolated by polynomial functions on \(W[[\Gamma _{K}^{\sharp }]]\).

  9. As the reader may note, hypothesis (ord) is inessential in this approach as well.

  10. We also refer to [27, Intro].

  11. We also refer to [29, Thm. 1.1].

  12. As \(L(s, \lambda ^{*}\cdot \frac{\chi }{\chi ^{*}})=L(s,\theta (\lambda ^{*}\cdot \frac{\chi }{\chi ^{*}}))\), the finiteness (4.4) also follows from [28].

  13. Usually referred as a ‘control theorem’.

References

  1. Aflalo, E., Nekovář, J.: Non-triviality of CM points in ring class field towers, With an appendix by Christophe Cornut. Israel J. Math. 175, 225–284 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Agboola, A., Howard, B.: Anticyclotomic Iwasawa theory of CM elliptic curves. Ann. Inst. Fourier (Grenoble) 56(4), 1001–1048 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Arnold, T.: Anticyclotomic main conjectures for CM modular forms. J. Reine Angew. Math. 606, 41–78 (2007)

    MathSciNet  MATH  Google Scholar 

  4. Bertolini, M., Darmon, H., Prasanna, K.: \(p\)-adic Rankin L-series and rational points on CM elliptic curves. Pac. J. Math. 260(2), 261–303 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bertolini, M., Darmon, H., Prasanna, K.: Generalized Heegner cycles and \(p\)-adic Rankin L-series. Duke Math. J. 162(6), 1033–1148 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bump, D., Friedberg, S., Hoffstein, J.: Nonvanishing theorems for L-functions of modular forms and their derivatives. Invent. Math. 102(3), 543–618 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  7. Burungale, A.: On the \(\mu \)-invariant of the cyclotomic derivative of a Katz \(p\)-adic L-function. J. Inst. Math. Jussieu 14(1), 131–148 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Burungale, A.: Non-triviality of Generalised Heegner Cycles Over Anticyclotomic Towers: A Survey, p-Adic Aspects Of Modular Forms, pp. 279–306. World Scientific Publishing, Hackensack (2016)

    MATH  Google Scholar 

  9. Burungale, A.: On the non-triviality of the \(p\)-adic Abel-Jacobi image of generalised Heegner cycles modulo \(p\), II: Shimura curves. J. Inst. Math. Jussieu 16(1), 189–222 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  10. Burungale, A.: On the non-triviality of the \(p\)-adic Abel-Jacobi image of generalised Heegner cycles modulo \(p\), I: modular curves. J. Alg. Geom. (to appear, 2020)

  11. Burungale, A., Disegni, D.: On the non-vanishing of p-adic heights on CM abelian varieties, and the arithmetic of Katz p-adic L-functions (2018). preprint, arXiv:1803.09268

  12. Burungale, A., Castella, F., Kim, C.-H.: A proof of Perrin-Riou’s Heegner point main conjecture (2019). preprint, arXiv:1908.09512

  13. Cai, L., Shu, J., Tian, Y.: Explicit Gross–Zagier and Waldspurger formulae. Algebra Number Theory 8(10), 2523–2572 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Castella, F.: \(p\)-adic heights of Heegner points and Beilinson–Flach classes. J. Lond. Math. Soc. 96(1), 156–180 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  15. Castella, F., Wan, X.: Perrin-Riou’s main conjecture for elliptic curves at supersingular primes (2016). preprint, arXiv:1607.02019

  16. Coates, J., Wiles, A.: On the conjecture of Birch and Swinnerton-Dyer. Invent. Math. 39(3), 223–251 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  17. Cornut, C.: Mazur’s conjecture on higher Heegner points. Invent. Math. 148(3), 495–523 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  18. Disegni, D.: The \(p\)-adic Gross-Zagier formula on Shimura curves. Compos. Math. 153(10), 1987–2074 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gross, B., Zagier, D.: Heegner points and derivatives of L-series. Invent. Math. 84(2), 225–320 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hida, H., Tilouine, J.: Anticyclotomic Katz \(p\)-adic L-functions and congruence modules. Ann. Sci. Ecole Norm. Sup. (4) 26(2), 189–259 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hida, H.: Hilbert Modular Forms and Iwasawa Theory. Oxford University Press, Oxford (2006)

    Book  MATH  Google Scholar 

  22. Hida, H.: The Iwasawa \(\mu \)-invariant of \(p\)-adic Hecke L-functions. Ann. of Math. (2) 172(1), 41–137 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Howard, B.: The Heegner point Kolyvagin system. Compos. Math. 140(6), 1439–1472 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hsieh, M.-L.: On the \(\mu \)-invariant of anticyclotomic \(p\)-adic L-functions for CM fields. J. Reine Angew. Math. 688, 67–100 (2014)

    MathSciNet  MATH  Google Scholar 

  25. Kato, K.: \(p\)-adic Hodge theory and values of zeta functions of modular forms. Cohomologies \(p\)-adiques et applications arithmétiques. III. Astérisque 295, 117–209 (2004)

    MATH  Google Scholar 

  26. Katz, N.M.: \(p\)-adic L-functions for CM fields. Invent. Math. 49(3), 199–297 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kobayashi, S.: The \(p\)-adic Gross-Zagier formula for elliptic curves at supersingular primes. Invent. Math. 191(3), 527–629 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. Euler systems, The Grothendieck Festschrift, Vol. II, 435–483, Progress in Mathathematics, 87. Birkhser Boston, Boston (1990)

  29. Li, Y., Liu, Y., Tian, Y.: On the Birch and Swinnerton–Dyer conjecture for CM elliptic curves over \({{\mathbb{Q}}}\) (2016). preprint, arXiv:1605.01481

  30. Mazur, B., Rubin, K., Silverberg, A.: Twisting commutative algebraic groups. J. Algebra 314(1), 419–438 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  31. Nekovář, J.: On the parity of ranks of Selmer groups. II. C. R. Acad. Sci. Paris S I Math. 332(2), 99–104 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  32. Nekovář, J.: \(p\)-adic Abel-Jacobi Maps and \(p\)-adic Heights, The Arithmetic And Geometry Of Algebraic Cycles (Banff, AB, 1998), 367–379, CRM Proc. Lecture Notes, 24, Amer. Math. Soc., Providence, RI (2000)

  33. Nekovář, J.: Selmer complexes. Astérisque No. 310, viii+559 (2006)

    MathSciNet  MATH  Google Scholar 

  34. Nekovář, J.: The Euler system method for CM points on Shimura curves, L-functions and Galois representations, 471–547, London Math. Soc. Lecture Note Ser., 320, Cambridge University Press, Cambridge, (2007)

  35. Perrin-Riou, B.: Fonctions \(L\) \(p\)-adiques, théorie d’Iwasawa et points de Heegner. Bull. Soc. Math. France 115(4), 399–456 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  36. Rohrlich, D.: On L-functions of elliptic curves and anticyclotomic towers. Invent. Math. 75(3), 383–408 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  37. Rubin, K.: Tate-Shafarevich groups and L-functions of elliptic curves with complex multiplication. Invent. Math. 89(3), 527–559 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  38. Rubin, K.: The “main conjectures” of Iwasawa theory for imaginary quadratic fields. Invent. Math. 103(1), 25–68 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  39. Rubin, K.: \(p\)-adic L-functions and rational points on elliptic curves with complex multiplication. Invent. Math. 107(2), 323–350 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  40. Rubin, K.: \(p \)-adic variants of the Birch and Swinnerton-Dyer conjecture for elliptic curves with complex multiplication, \(p\)-adic monodromy and the Birch and Swinnerton-Dyer conjecture (Boston, MA, 1991), 71–80, Contemp. Math., 165, Amer. Math. Soc., Providence, RI (1994)

  41. Saito, H.: On Tunnell’s formula for characters of \({{\rm GL}}(2)\). Compositio Math. 85(1), 99–108 (1993)

    MathSciNet  MATH  Google Scholar 

  42. Skinner, C., Urban, E.: The Iwasawa main conjectures for \({{\rm GL}}_2\). Invent. Math. 195(1), 1–277 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  43. Skinner, C.: A converse to a theorem of Gross, Zagier and Kolyvagin (2014). preprint, arXiv:1405.7294

  44. Tian, Y.: Congruent numbers and Heegner points. Camb. J. Math. 2(1), 117–161 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  45. Tunnell, J.: Local \(\epsilon \)-factors and characters of \({{\rm GL}}(2)\). Am. J. Math. 105(6), 1277–1307 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  46. Vatsal, V.: Special values of anticyclotomic L-functions. Duke Math J. 116, 219–261 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  47. Wan, X.: Iwasawa main conjecture for Rankin–Selberg \(p\)-adic L-functions (2014). preprint, arXiv:1408.4044

  48. Wan, X.: Heegner point Kolyvagin system and Iwasawa main conjecture. http://www.mcm.ac.cn/faculty/wx/201609/t20160919_348535.html

  49. Yuan, X., Zhang, S.-W., Zhang, W.: The Gross–Zagier formula on Shimura curves. Ann. Math. Stud. 184, viii+272 (2013)

    MathSciNet  MATH  Google Scholar 

  50. Zhang, W.: Selmer groups and the indivisibility of Heegner points. Camb. J. Math. 2(2), 191–253 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We are grateful to Karl Rubin, Chris Skinner and Wei Zhang for inspiring conversations and encouragement. We are also grateful to Francesc Castella, Laurent Clozel, Haruzo Hida, Chandrashekhar Khare and Peter Sarnak for insightful conversations. We thank Adebisi Agboola, Ben Howard and Xin Wan for helpful correspondence. We also thank Li Cai, John Coates, Henri Darmon, Daniel Disegni, Ralph Greenberg, Yukako Kezuka, Shinichi Kobayashi, Chao Li, Richard Taylor and Shou-Wu Zhang for instructive conversations about the topic. We are grateful to organisers of the program ‘Euler Systems and Special Values of L-functions’ held at CIB Lausanne during July–December 2017 for stimulating atmosphere. Part of this work was done while the authors were visiting CIB during an early part of the program. The first named author is also grateful to MCM Beijing for persistent warm hospitality. The article was conceived in Beijing during the summer of 2017. Finally, we are indebted to the referee. The current form of the article owes much to the perceptive comments and incisive suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashay A. Burungale.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burungale, A.A., Tian, Y. p-converse to a theorem of Gross–Zagier, Kolyvagin and Rubin. Invent. math. 220, 211–253 (2020). https://doi.org/10.1007/s00222-019-00929-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-019-00929-7

Navigation