Skip to main content
Log in

On integer solutions of Parsell–Vinogradov systems

  • Published:
Inventiones mathematicae Aims and scope

Abstract

We prove a sharp upper bound on the number of integer solutions of the Parsell–Vinogradov system in every dimension \(d\ge 2\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Arhipov, G.I., Karacuba, A.A., Cubarikov, V.N.: Multiple trigonometric sums (Russian). Trudy Mat. Inst. Steklov. 151, 128 (1980)

    Google Scholar 

  2. Bennett, J., Bez, N., Flock, T., Lee, S.: Stability of Brascamp-Lieb constant and applications. Amer. J. Math. 140(2), 543–569 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bennett, J., Carbery, A., Christ, M., Tao, T.: Finite bounds for Hölder–Brascamp–Lieb multilinear inequalities. Math. Res. Lett. 17(4), 647–666 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bennett, J., Carbery, T., Tao, T.: On the multilinear restriction and Kakeya conjectures. Acta Math. 196(2), 261–302 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bourgain, J.: Moment inequalities for trigonometric polynomials with spectrum in curved hypersurfaces. Isr. J. Math. 193(1), 441–458 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bourgain, J., Demeter, C.: The proof of the \(l^2\) decoupling conjecture. Ann. Math. 182(1), 351–389 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bourgain, J., Demeter, C.: Decouplings for surfaces in \(\mathbb{R}^4\). J. Funct. Anal. 270(4), 1299–1318 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bourgain, J., Demeter, C.: Decouplings for curves and hypersurfaces with nonzero Gaussian curvature. J. Anal. Math. 133, 279–311 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bourgain, J., Demeter, C.: Mean value estimates for Weyl sums in two dimensions. J. Lond. Math. Soc. (2) 94(3), 814–838 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bourgain, J., Demeter, C., Guo, S.: Sharp bounds for the cubic Parsell–Vinogradov system in two dimensions. Adv. Math. 320, 827–875 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bourgain, J., Demeter, C., Guth, L.: Proof of the main conjecture in Vinogradov’s mean value theorem for degrees higher than three. Ann. Math. (2) 184(2), 633–682 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bourgain, J., Guth, L.: Bounds on oscillatory integral operators based on multilinear estimates. Geom. Funct. Anal. 21(6), 1239–1295 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Brandes, J., Wooley, T.: Vinogradov systems with a slice off. Mathematika 63(3), 797–817 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  14. Demeter, C., Guo, S., Shi, F.: Sharp decouplings for three dimensional manifolds in \(R^5\). Rev. Mat. Iberoamericana (to appear). arXiv:1609.04107

  15. Ford, K.: Vinogradov’s integral and bounds for the Riemann zeta function. Proc. Lond. Math. Soc. (3) 85(3), 565–633 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ford, K., Wooley, T.: On Vinogradov’s mean value theorem: strongly diagonal behaviour via efficient congruencing. Acta Math. 213, 199–236 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Garrigós, G., Seeger, A.: On plate decompositions of cone multipliers. Proc. Edinb. Math. Soc. (2) 52(3), 631–651 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Garrigós, G., Seeger, A.: A mixed norm variant of Wolff’s inequality for paraboloids. Harmonic analysis and partial differential equations, pp. 179–197, Contemp. Math., vol. 505, Amer. Math. Soc., Providence, RI (2010)

  19. Guo, S., Zorin-Kranich, P.: Decoupling for moment manifolds associated to Arkhipov–Chubarikov–Karatsuba systems (2018). arXiv:1811.02207

  20. Guth, L.: A short proof of the multilinear Kakeya inequality. Math. Proc. Camb. Philos. Soc. 158(1), 147–153 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Heath-Brown, R., Pierce, L.: Burgess bounds for short mixed character sums. J. Lond. Math. Soc. 91(3), 693–708 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Łaba, I., Pramanik, M.: Wolff’s inequality for hypersurfaces. Collect. Math. Extra, 293–326 (2006)

    MathSciNet  MATH  Google Scholar 

  23. Łaba, I., Wolff, T.: A local smoothing estimate in higher dimensions. J. Anal. Math. 88, 149–171 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  24. Li, Z.: Effective \(l^2\) decoupling for the parabola. arXiv:1711.01202

  25. Milnor, J.: On the Betti numbers of real varieties. Proc. Am. Math. Soc. 15, 275–280 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  26. Oh, C.: Decouplings for \(d\)-dimensional surfaces in \(R^{2d}\). arXiv:1609.02022

  27. Oleinik, O.A., Petrovskii, I.G.: On the topology of real algebraic surfaces. Izvestiya Akad. Nauk SSSR. Ser. Mat. 13, 389–402 (1949)

    MathSciNet  Google Scholar 

  28. Parsell, S.T.: The density of rational lines on cubic hypersurfaces. Trans. Am. Math. Soc. 352(11), 5045–5062 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  29. Parsell, S.T.: A generalization of Vinogradov’s mean value theorem. Proc. Lond. Math. Soc. (3) 91(1), 1–32 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  30. Parsell, S.T., Prendiville, S.M., Wooley, T.D.: Near-optimal mean value estimates for multidimensional Weyl sums. Geom. Funct. Anal. 23(6), 1962–2024 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  31. Pierce, L.: Burgess bounds for multi-dimensional short mixed character sums. J. Number Theory 163, 172–210 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  32. Pierce, L.: The Vinogradov Mean Value Theorem [after Wooley, and Bourgain, Demeter and Guth]. arXiv:1707.00119

  33. Thom, R.: Sur l’homologie des variétés algbriques réelles. Differential and Combinatorial Topology (A Symposium in Honor of Marston Morse). Princeton University Press, Princeton, NJ, pp. 255–265 (1965)

  34. Wongkew, R.: Volumes of tubular neighbourhoods of real algebraic varieties. Pac. J. Math. 159(1), 177–184 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  35. Wolff, T.: Local smoothing type estimates on \(L^p\) for large \(p\). Geom. Funct. Anal. 10(5), 1237–1288 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  36. Wooley, T.: Large improvements in Waring’s problem. Ann. Math. (2) 135(1), 131–164 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  37. Wooley, T.: Vinogradov’s mean value theorem via efficient congruencing. Ann. Math. 175, 1575–1627 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  38. Wooley, T.: Vinogradov’s mean value theorem via efficient congruencing. II. Duke Math. J. 162, 673–730 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  39. Wooley, T.: Mean value estimates for odd cubic Weyl sums. Bull. Lond. Math. Soc. 47(6), 946–957 (2015)

    MathSciNet  MATH  Google Scholar 

  40. Wooley, T.: The cubic case of the main conjecture in Vinogradov’s mean value theorem. Adv. Math. 294, 532–561 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  41. Wooley, T.: Approximating the main conjecture in Vinogradov’s mean value theorem. Mathematika 63(1), 292–350 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  42. Wooley, T.: Nested efficient congruencing and relatives of Vinogradov’s mean value theorem. arxiv:1708.01220

  43. Zhang, R.: Perturbed Brascamp–Lieb inequalities and application to Parsell–Vinogradov systems. Academic dissertations (Ph.D.). Princeton University, Princeton, NJ

Download references

Acknowledgements

The authors thank Ciprian Demeter for numerous discussions on related topics. The first author thanks Julia Brandes and Lillian Pierce for discussions on applications of their result. Part of this work is contained in the PhD thesis [43] of the second author. He would like to thank his advisor Peter Sarnak for a lot of very helpful discussions. Part of this material is based upon work supported by the National Science Foundation under Grant No. DMS-1440140 while the first author was in residence at the Mathematical Sciences Research Institute in Berkeley, California, during the Spring semester of 2017. The work of the second author is supported by the National Science Foundation under Grant No. 1638352 and the James D. Wolfensohn Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruixiang Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, S., Zhang, R. On integer solutions of Parsell–Vinogradov systems. Invent. math. 218, 1–81 (2019). https://doi.org/10.1007/s00222-019-00881-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-019-00881-6

Mathematics Subject Classification

Navigation