Skip to main content
Log in

The structure of tame minimal dynamical systems for general groups

  • Published:
Inventiones mathematicae Aims and scope

Abstract

We use the structure theory of minimal dynamical systems to show that, for a general group \(\Gamma \), a tame, metric, minimal dynamical system \((X, \Gamma )\) has the following structure:

Here (i) \(\tilde{X}\) is a metric minimal and tame system (ii) \(\eta \) is a strongly proximal extension, (iii) Y is a strongly proximal system, (iv) \(\pi \) is a point distal and RIM extension with unique section, (v) \(\theta \), \(\theta ^*\) and \(\iota \) are almost one-to-one extensions, and (vi) \(\sigma \) is an isometric extension. When the map \(\pi \) is also open this diagram reduces to

In general the presence of the strongly proximal extension \(\eta \) is unavoidable. If the system \((X, \Gamma )\) admits an invariant measure \(\mu \) then Y is trivial and \(X = \tilde{X}\) is an almost automorphic system; i.e. \(X \overset{\iota }{\rightarrow } Z\), where \(\iota \) is an almost one-to-one extension and Z is equicontinuous. Moreover, \(\mu \) is unique and \(\iota \) is a measure theoretical isomorphism \(\iota : (X,\mu , \Gamma ) \rightarrow (Z, \lambda , \Gamma )\), with \(\lambda \) the Haar measure on Z. Thus, this is always the case when \(\Gamma \) is amenable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akin, E.: Enveloping linear maps. In: Topological Dynamics and Applications. Contemporary Mathematics, vol. 215, pp. 121–131. American Mathematical Society, Providence, RI (1998)

  2. Auslander, J.: Minimal Flows and Their Extensions. North-Holland Mathematics Studies, vol. 153. Notas de Matemática [Mathematical Notes], 122. North-Holland Publishing Co., Amsterdam (1988)

  3. Borel, A.: Density properties of certain subgroups of semisimple groups without compact components. Ann. Math. (2) 72, 179–188 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bourgain, J., Fremlin, D.H., Talagrand, M.: Pointwise compact sets of Baire-measurable functions. Am. J. Math. 100, 845–886 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bronstein, I.U.: A characteristic property of PD-extensions. Bul. Akad. Stiimce RSS Moldoven 3, 11–15 (1977). (Russian)

    MathSciNet  Google Scholar 

  6. Ditor, S.Z., Eifler, L.Q.: Some open mapping theorems for measures. Trans. Am. Math. Soc. 164, 287–293 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  7. Downarowicz, T., Glasner, E.: Isomorphic extensions and applications. Topol. Methods Nonlinear Anal. 48, 321–338 (2016)

    MathSciNet  MATH  Google Scholar 

  8. Ellis, R.: A semigroup associated with a transformation group. Trans. Am. Math. Soc. 94, 272–281 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ellis, R.: The enveloping semigroup of projective flows. Ergod. Theory Dyn. Syst. 13, 635–660 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ellis, R.: Lectures on Topological Dynamics. W. A. Benjamin Inc, New York (1969)

    MATH  Google Scholar 

  11. Ellis, R.: The Veech structure theorem. Trans. Am. Math. Soc. 186(1973), 203–218 (1974)

    MathSciNet  MATH  Google Scholar 

  12. Ellis, R., Glasner, E., Shapiro, L.: Proximal-isometric flows. Adv. Math. 17, 213–260 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  13. Furstenberg, H.: The structure of distal flows. Am. J. Math. 85, 477–515 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  14. Furstenberg, H.: A note on Borel’s density theorem. Proc. Am. Math. Soc. 55, 209–212 (1976)

    MathSciNet  MATH  Google Scholar 

  15. Glasner, E.: Relatively invariant measures. Pac. J. Math. 58, 393–410 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  16. Glasner, E.: Proximal Flows. Lecture Notes in Mathematics, vol. 517. Springer, Berlin (1976)

    MATH  Google Scholar 

  17. Glasner, E.: Distal and semisimple affine flows. Am. J. Math. 109, 115–131 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  18. Glasner, E.: Quasifactors of minimal systems. Topol. Methods Nonlinear Anal. 16, 351–370 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  19. Glasner, E.: Structure theory as a tool in topological dynamics. In: Descriptive Set Theory and Dynamical Systems, LMS Lecture Note Series 277, pp. 173–209. Cambridge University Press, Cambridge (2000)

  20. Glasner, E.: On tame dynamical systems. Colloq. Math. 105, 283–295 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Glasner, E.: The structure of tame minimal dynamical systems. Ergod. Theory Dyn. Syst. 27, 1819–1837 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Glasner, E., Megrelishvili, M.: Hereditarily non-sensitive dynamical systems and linear representations. Colloq. Math. 104(2), 223–283 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. Glasner, E., Megrelishvili, M.: Eventual nonsensitivity and tame dynamical systems. arXiv:1405.2588

  24. Glasner, E., Megrelishvili, M.: Circularly ordered dynamical systems (2016). arXiv:1608.05091 [math.DS]

  25. Glasner, E., Megrelishvili, M., Uspenskij, V.V.: On metrizable enveloping semigroups. Isr. J. Math. 164, 317–332 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. Huang, W.: Tame systems and scrambled pairs under an abelian group action. Ergod. Theory Dyn. Syst. 26, 1549–1567 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  27. Huang, W., Li, S.M., Shao, S., Ye, X.: Null systems and sequence entropy pairs. Ergod. Theory Dyn. Syst. 23, 1505–1523 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kerr, D., Li, H.: Independence in topological and \(C^*\)-dynamics. Math. Ann. 338, 869–926 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  29. Köhler, A.: Enveloping semigroups for flows. Proc. R. Ir. Acad. 95A, 179–191 (1995)

    MathSciNet  MATH  Google Scholar 

  30. Li, Jian, Tu, S., Ye, X.: Mean equicontinuity and mean sensitivity. Ergod. Theory Dyn. Syst. 35, 2587–2612 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  31. McMahon, D.C.: Weak mixing and a note on the structure theorem for minimal transformation groups. Ill. J. Math. 20, 186–197 (1976)

    MathSciNet  MATH  Google Scholar 

  32. Veech, W.A.: Point-distal flows. Am. J. Math. 92, 205–242 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  33. Veech, W.A.: Topological dynamics. Bull. Am. Math. Soc. 83, 775–830 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  34. de Vries, J.: Elements of Topological Dynamics. Kluwer Academic Publishers, Dordrecht (1993)

    Book  MATH  Google Scholar 

  35. van der Woude, J.: Characterizations of H(PI) extensions. Pac. J. Math. 120, 453–467 (1985)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eli Glasner.

Additional information

This research was supported by a grant of the Israel Science Foundation (ISF 668/13).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Glasner, E. The structure of tame minimal dynamical systems for general groups. Invent. math. 211, 213–244 (2018). https://doi.org/10.1007/s00222-017-0747-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-017-0747-z

Mathematics Subject Classification

Navigation